ON ADMISSIBLE WHITNEY MAPS

BY

HISAO KATO (HIROSHIMA)

1. Introduction. Throughout this paper, the word compactum means a compact metric space. A continuum is a connected compactum. Let \(X \) be a metric space with metric \(\rho \). The hyperspaces of \(X \) are the spaces

\[
2^X = \{ A \mid A \text{ is a nonempty and compact subset of } X \}
\]

and

\[
C(X) = \{ A \in 2^X \mid A \text{ is connected} \}
\]

which are metrized with the Hausdorff metric \(\rho_H \), i.e.,

\[
\rho_H(A, B) = \max_{a \in A} \{ \sup_{b \in B} \rho(a, b) \}
\]

A Whitney map for a hyperspace \(\mathcal{H} = 2^X \) or \(C(X) \) is a continuous function \(\omega : \mathcal{H} \to [0, \omega(X)] \) such that \(\omega(\{x\}) = 0 \) for each \(x \in X \), and if \(A, B \in \mathcal{H} \), \(A \subset B \) and \(A \neq B \), then \(\omega(A) < \omega(B) \). In [12], Whitney showed that for any metric space \((X, \rho) \) there always exists a Whitney map for \(\mathcal{H} = 2^X \) or \(C(X) \). We recall the construction. Let \(A \in \mathcal{H} \). For each \(n \geq 2 \) let

\[
F_n(A) = \{ K \subset A \mid K \neq \emptyset \text{ and the cardinality of } K \text{ is } \leq n \}.
\]

Also, define \(\lambda_n : F_n(A) \to [0, \infty) \) by letting

\[
\lambda_n(\{a_1, a_2, \ldots, a_n\}) = \min \{ \rho(a_i, a_j) \mid i \neq j \}
\]

for all \(\{a_1, a_2, \ldots, a_n\} \in F_n(A) \), and let

\[
\omega_n(A) = \sup \lambda_n(F_n(A)).
\]

Then

\[
(\ast) \quad \omega(A) = \sum_{n=2}^{\infty} \omega_n(A)/2^{n-1}.
\]

The notion of Whitney map is a convenient and important tool in order to study hyperspaces theory. It is of interest to obtain information about Whitney levels \(\omega^{-1}(t) \) \((0 < t < \omega(X)) \) and to determine those properties
which are preserved by the convergence of positive Whitney levels $\omega^{-1}(t_a)$ ($t_a > 0$) to the zero level $\omega^{-1}(0) = X$. In [3] and [11], Curtis, Schori and West proved that for any Peano continuum (= locally connected continuum) X, 2^X is homeomorphic to the Hilbert cube $Q = [-1, +1]^\infty$, and if X contains no free arc, $C(X)$ is homeomorphic to Q. In [5], Goodykoontz and Nadler introduced the notion “admissible Whitney map”. A Whitney map ω for $\mathcal{H} = 2^X$ or $C(X)$ is admissible [5] if there is a homotopy $h: \mathcal{H} \times I \to \mathcal{H}$ satisfying the following conditions:

(A1) for all $A \in \mathcal{H}$,

$$h(A, 1) = A, \quad h(A, 0) \in F_1(X) = \{\{x\} | x \in X\};$$

(A2) if $\omega(h(A, t)) > 0$ for some $A \in \mathcal{H}$, $t \in I$, then

$$\omega(h(A, s)) < \omega(h(A, t)) \quad \text{whenever} \quad 0 \leq s < t \leq 1.$$

In [5], it was shown that if X is either a compact starshaped subset of a Banach space or a 1-dimensional AR (= dendrite), then there exist admissible Whitney maps for $\mathcal{H} = 2^X$ and $C(X)$. By using the notion of admissible Whitney map, Goodykoontz and Nadler [5] proved the following

(1.1) Let X be a Peano continuum and let ω be an admissible Whitney map for $\mathcal{H} = 2^X$ or $C(X)$. If $\mathcal{H} = C(X)$, assume that X contains no free arc. Then, for any $t \in (0, \omega(X))$, $\omega^{-1}(t)$ is a Hilbert cube.

A Whitney map ω for $\mathcal{H} = 2^X$ or $C(X)$ is strongly admissible [6] if there is a homotopy $h: \mathcal{H} \times I \to \mathcal{H}$ satisfying (A1), (A2) and

(A3) $h(\{x\}, t) = \{x\}$ for each $x \in X$ and $t \in I$.

In [6], we proved the following

(1.2) Let X be a Peano continuum and let ω be an admissible Whitney map for $\mathcal{H} = 2^X$ or $C(X)$. If $\mathcal{H} = C(X)$, assume that X contains no free arc. Then the restriction

$$\omega|\omega^{-1}((0, \omega(X))): \omega^{-1}((0, \omega(X))) \to (0, \omega(X))$$

of ω to $\omega^{-1}((0, \omega(X)))$ is a trivial bundle map with Hilbert cube fibers. Moreover, if X is the Hilbert cube Q, then there is a Whitney map ω for $\mathcal{H} = 2^Q$ or $C(Q)$ such that $\omega|\omega^{-1}((0, \omega(Q)))$ is a trivial bundle map with Hilbert cube fibers. Also, if X is the n-sphere S^n ($n \geq 1$), then there is a Whitney map ω for $\mathcal{H} = 2^{S^n}$ ($n \geq 1$) or $C(S^n)$ ($n \geq 2$) such that, for some $t_0 \in (0, \omega(S^n))$, $\omega|\omega^{-1}((0, t_0))$ is a trivial bundle map with $S^n \times Q$ fibers.

The purpose of this paper is to prove the following:

(1) Let P be a finite collapsible polyhedron and let $\mathcal{H} = 2^P$ or $C(P)$. If $\mathcal{H} = C(P)$, assume that P contains no free arc. Then there is a Whitney map ω for \mathcal{H} such that $\omega|\omega^{-1}((0, \omega(P)))$ is a trivial bundle map with Hilbert cube fibers.
Let K be a cubical complex and let $P = |K|$. Let $\mathcal{H} = 2^P$ or $C(P)$. If $\mathcal{H} = C(P)$, assume that P contains no free arc. If K is locally regular collapsible, then there is a Whitney map ω for \mathcal{H} such that, for some $t_0 \in (0, \omega(P))$, $\omega \omega^{-1}((0, t_0))$ is a trivial bundle map with $P \times Q$ fibers.

2. Whitney maps and hyperconvex metric spaces. A metric space (X, ρ) is hyperconvex (or injective) [1] if ρ is convex and any collection of solid spheres in pairwise intersection in X has a common point. In [1], Theorem 3, it was proved that a metric space (X, ρ) is hyperconvex if and only if every mapping which increases no distance from a subset of any metric space Y to X can be extended, increasing no distance, over Y.

First, we show the following

Theorem. Let (X, ρ) be a hyperconvex metric compactum. Suppose that ω is the Whitney map for $\mathcal{H} = 2^P$ or $C(X)$ which is defined by (\ast) and the metric ρ. Then ω is strongly admissible.

Proof. It is well known that there exists a Banach space B with norm $\| \cdot \|$ such that B contains X and, for any $x, y \in X$, $\rho(x, y) = \|x - y\|$ (see [8]). Let ω' be the Whitney map for $\mathcal{H}' = 2^B$ or $C(B)$ as is defined by (\ast) and the metric ρ', where $\rho'(b, b') = \|b - b'\|$ for $b, b' \in B$. Since X is an AR (see [1]), there is a retraction $r: \mathcal{H} \to X$, i.e., $r(\{x\}) = x$ for each $x \in X$. Let $A \in \mathcal{H}$. Define a homotopy $h_A: A \times I \to B$ by

$$h_A(a, t) = (1 - t) \cdot r(A) + t \cdot a \quad \text{for each } a \in A, t \in I.$$

Also, define a homotopy $h': \mathcal{H} \times I \to \mathcal{H}'$ by

$$h'(A, t) = \{h_A(a, t) \mid a \in A\} \quad \text{for each } A \in \mathcal{H}, t \in I.$$

Since (X, ρ) is hyperconvex, there is a contraction $f: B \to X$, i.e.,

$$\rho(f(y), f(z)) \leq \rho'(y, z) = \|y - z\| \quad \text{for } y, z \in B.$$

If $x, y \in A$, $x \neq y$, and $0 \leq t' < t \leq 1$, then

$$\rho'(h_A(x, t'), h_A(y, t')) = \|t' - (x - y)\| < \|t(x - y)\|$$

$$= \rho'(h_A(x, t), h_A(y, t)).$$

Hence, if A is nondegenerate, by (3) we have

$$\omega'(h'(A, t')) < \omega'(h'(A, t)) \quad \text{for } 0 \leq t' < t \leq 1$$

(see [5], (2.13)). Since f is a contraction, we can easily see

$$\omega\left(f\left(h'(A, t)\right)\right) = \omega\left(f\left(h'(A, t)\right)\right) \leq \omega'(h'(A, t)) \quad \text{for each } A \in \mathcal{H}, t \in I.$$

Consider the function $K_\rho: \mathcal{H} \times [0, \infty) \to \mathcal{H}$ defined by

$$K_\rho(A, s) = \{x \in X \mid \rho(A, x) \leq s\} \quad \text{for each } A \in \mathcal{H}, s \in [0, \infty).$$
Since \(q \) is convex, \(K_q \) is continuous (see [5], (1.2)). For each \(A \in \mathcal{H} \) and \(t \in I \), there is the minimal number \(m(A, t) \geq 0 \) such that
\[
\omega\left(K_q\left(f(h'(A, t), m(A, t))\right) = \omega'(h'(A, t)) \right).
\]
Define a homotopy \(h: \mathcal{H} \times I \to \mathcal{H} \) by
\[
h(A, t) = K_q\left(f(h'(A, t), m(A, t)) \right) \quad \text{for each} \quad A \in \mathcal{H}, \; t \in I.
\]
Clearly, we have \(\omega(h(A, t)) = \omega'(h'(A, t)) \). Hence (4) implies that \(\omega \) satisfies the condition (A2). Obviously, \(\omega \) satisfies the conditions (A1) and (A3). Thus \(\omega \) is strongly admissible.

A metric space \((X, q) \) is locally hyperconvex if for any \(x \in X \) there is a neighborhood \(U \) of \(x \) in \(X \) such that \(q|U \) is a hyperconvex metric. Then we have the following

(2.2) Theorem. Let \((X, q) \) be a locally hyperconvex metric continuum and let \(\omega \) be the Whitney map for \(\mathcal{H} = 2^X \) or \(C(X) \) which is defined by (*) and the metric \(q \). Then there exist a positive number \(t_0 \in (0, \omega(X)) \) and a homotopy
\[
h: \omega^{-1}([0, t_0]) \times I \to \omega^{-1}([0, t_0])
\]
such that

\begin{align*}
(A1)' & \quad h(A, 1) = A, \quad h(A, 0) \in F_1(X) \quad \text{for each} \quad A \in \omega^{-1}([0, t_0]); \\
(A2)' & \quad \text{if} \quad \omega(h(A, t)) > 0 \quad \text{for some} \quad A \in \omega^{-1}([0, t_0]) \quad \text{and} \quad t \in I, \quad \text{then} \\
& \quad \omega(h(A, s)) < \omega(h(A, t)) \quad \text{whenever} \quad 0 \leq s < t \leq 1; \\
(A3)' & \quad h(\{x\}, t) = \{x\} \quad \text{for each} \quad x \in X \quad \text{and} \quad t \in I.
\end{align*}

Proof. Since \(q \) is locally hyperconvex, there is a positive number \(\varepsilon > 0 \) such that, for any \(x \in X \), \(q|S(x, \varepsilon) \) is hyperconvex, where
\[
S(x, \varepsilon) = \{y \in X \mid q(x, y) \leq \varepsilon\}.
\]
Also, there are points \(x_1, x_2, \ldots, x_n \) of \(X \) such that
\[
X = \bigcup_{i=1}^{n} \text{Int}S(x_i, \varepsilon/3).
\]
Since \(X \) is an ANR, there is a retraction \(r: \mathcal{U} \to F_1(X) = X \), where \(\mathcal{U} \) is a neighborhood of \(F_1(X) \) in \(\mathcal{H} \). Let \(\delta \) be a positive number such that
\[
(2^n + 1)\delta < \varepsilon/3.
\]
Choose a sufficiently small positive number \(t_0 \in (0, \omega(X)) \) such that
\begin{enumerate}
\item if \(A \in \omega^{-1}([0, t_0]) \), then \(A \subset S(x_i, \varepsilon/3) \) for some \(i \);
\item \(\omega^{-1}([0, t_0]) \subset \mathcal{U} \);
\item if \(A \in \omega^{-1}([0, t_0]) \), then \(S(r(A), \delta) \supset A \).
\end{enumerate}
Set
\[\mathcal{A}_i = \{ A \in \omega^{-1}(\{0, t_0\}) \mid A \subset S(x_i, \varepsilon/3) \}, \]
\[\mathcal{B}_i = \{ A \in \omega^{-1}(\{0, t_0\}) \mid A \subset \text{Int } S(x_i, 2\varepsilon/3) \} \quad (i = 1, 2, \ldots, n), \]
\[\mathcal{A}_0 = \mathcal{B}_0 = \emptyset. \]

Let \(\varphi_i : \omega^{-1}(\{0, t_0\}) \to I \) (\(i = 1, 2, \ldots, n \)) be a map such that

(4) \(\varphi_i(A) = 0 \) if \(A \in \mathcal{A}_i \) and \(\varphi_i(A) = 1 \) if \(A \) is not contained in \(\mathcal{B}_i \).

By induction, we shall construct a homotopy
\[h_i : \omega^{-1}(\{0, t_0\}) \times I \to \omega^{-1}(\{0, t_0\}) \quad (i = 0, 1, \ldots, n) \]
such that

A (i) \(h_i(A, 1) = A \) for each \(A \in \omega^{-1}(\{0, t_0\}) \);

B (i) if \(A \in \bigcup_{j=0}^i \mathcal{A}_j \), then \(h_i(A, 0) = r(A) \in F_1(X) \);

C (i) if \(A \in \omega^{-1}(\{0, t_0\}) \) and \(0 \leq s \leq t \leq 1 \), then
\[\omega(h_i(A, s)) \leq \omega(h_i(A, t)); \]

D (i) \(h_i(\{x\}, t) = \{x\} \) for \(x \in X \) and \(t \in I \);

E (i) if \(\omega(h_i(A, s)) = \omega(h_i(A, t)) \) for some \(A \in \omega^{-1}(\{0, t_0\}) \) and \(s, t \in I \), then \(h_i(A, s) = h_i(A, t) \);

F (i) \(h_i(A, t) \subset S(r(A), 2^i \delta) \) for each \(A \in \omega^{-1}(\{0, t_0\}) \) and \(t \in I \).

First, for the case \(i = 0 \), define
\[h_0 : \omega^{-1}(\{0, t_0\}) \times I \to \omega^{-1}(\{0, t_0\}) \]
by \(h_0(A, t) = A \) for each \(A \in \omega^{-1}(\{0, t_0\}) \) and \(t \in I \). Next, we suppose that there is a homotopy
\[h_i : \varphi^{-1}(\{0, t_0\}) \times I \to \omega^{-1}(\{0, t_0\}) \]
satisfying the conditions A (i)–F (i). We shall construct a homotopy
\[h_{i+1} : \omega^{-1}(\{0, t_0\}) \times I \to \omega^{-1}(\{0, t_0\}) \]
satisfying the conditions A (i+1)–F (i+1). If \(A \in \mathcal{B}_{i+1} \), then (3) implies that \(r(A) \in S(x_{i+1}, (2\varepsilon/3) + \delta) \). By F (i), we can see that if \(A \in \mathcal{B}_{i+1} \), then
\[h_i(A, 0) \subset S(x_{i+1}, (2\varepsilon/3) + \delta(1 + 2^i)) \subset S(x_{i+1}, \varepsilon). \]
Since \(g(S(x_{i+1}, \varepsilon) \) is hyperconvex, by the proof of (2.1) we have a homotopy
\[h'_{i+1} : h_i(\mathcal{B}_{i+1} \times \{0\}) \times I \to \omega^{-1}(\{0, t_0\}) \]
such that

(5) \(h'_{i+1}(A, 1) = A \), \(h'_{i+1}(A, 0) = r(A) \) for each \(A \in h_i(\mathcal{B}_{i+1} \times \{0\}); \)
(6) if \(\omega \left(h^i_{i+1} (A, t) \right) > 0 \) for some \(A \in h_i \left(\mathcal{B}_{i+1} \times \{0\} \right) \) and \(t \in I \), then
\[
0 < \omega \left(h^i_{i+1} (A, s) \right) < \omega \left(h^i_{i+1} (A, t) \right) \quad \text{whenever} \quad 0 < s < t \leq 1;
\]

(7) \(h^i_{i+1} (\{x\}, t) = \{x\} \) for \(\{x\} \in h_i \left(\mathcal{B}_{i+1} \times \{0\} \right) \) and \(t \in I \).

Also, by the proof of (2.1) we see that

(8) \(h^i_{i+1} (A, t) \in S(r(A), 2 \sup \{d(r(A), a) \mid a \in A\}) \) for \(A \in h_i \left(\mathcal{B}_{i+1} \times \{0\} \right) \) and \(t \in I \) (because in the proof of (2.1) \(f \) is a contraction).

Define a homotopy

\[
h^i_{i+1} : \omega^{-1}([0, t_0]) \times I \to \omega^{-1}([0, t_0])
\]

by

\[
h^i_{i+1} (A, t) = \begin{cases}
 h^i (A, 2t - 1) & \text{if } A \in \omega^{-1}([0, t_0]) \text{ and } 1/2 \leq t \leq 1, \\
 h^i_{i+1} (h_i (A, 0), 2t + (1 - 2t) \varphi_{i+1} (A)) & \text{if } A \in \mathcal{B}_{i+1} \text{ and } 0 \leq t \leq 1/2, \\
 h_i (A, 0) & \text{if } A \text{ is not contained in } \mathcal{B}_{i+1} \text{ and } 0 \leq t \leq 1/2.
\end{cases}
\]

By A(i)–E(i), \(h^i_{i+1} \) satisfies the conditions A(i+1)–E(i+1). By F(i) and (8), we see that \(h^i_{i+1} \) satisfies the conditions F(i+1). Thus we have a homotopy

\[
h' = h_n : \omega^{-1}([0, t_0]) \times I \to \omega^{-1}([0, t_0])
\]

such that

(9) \(h'(A, 1) = A \), \(h'(A, 0) = r(A) \in F_1 (X) \) for \(A \in \omega^{-1}([0, t_0]) \);

(10) \(h' (\{x\}, t) = \{x\} \) for \(x \in X \) and \(t \in I \);

(11) if \(\omega (h'(A, s)) = \omega (h'(A, t)) \) for some \(A \in \omega^{-1}([0, t_0]) \) and \(s, t \in I \),

then \(h'(A, s) = h'(A, t) \).

By (9) and (11), we can define a function

\[
h : \omega^{-1}([0, t_0]) \times I \to \omega^{-1}([0, t_0])
\]

by

(12) \(h(A, t) = h'(A, \theta(A, t)) \), where \(\theta(A, t) \) is a positive number such that

\[
\omega (h'(A, \theta(A, t))) = t \cdot \omega (A).
\]

Then \(h \) is continuous. In fact, suppose, on the contrary, that there are a sequence \(A_1, A_2, \ldots \) of points in \(\omega^{-1}([0, t_0]) \) and a sequence \(t_1, t_2, \ldots \) of positive numbers in \(I \) such that

\[
\lim A_n = A \in \omega^{-1}([0, t_0]) \quad \text{and} \quad \lim t_n = t \in I
\]

and

\[
\lim h(A_n, t_n) = B \neq h(A, t).
\]
By (12),
\[
\omega(B) = \lim (t_n \cdot \omega(A_n)) = t \cdot \omega(A) = \omega(h(A, \theta(A, t))).
\]
Note that \(B \in h'(A) \times I \). Hence (11) implies that
\[B = h'(A, \theta(A, t)) = h(A, t). \]
This is a contradiction. Clearly, \(h \) satisfies the conditions (A1)', (A2)' and (A3)', This completes the proof.

3. Whitney maps of certain polyhedra. In this section, we study Whitney maps of certain polyhedra. Let \(K \) be a cubical complex. Metrize \(|K|\) as follows: Assume that each \(k \)-dimensional cube of \(K \) is a copy of \(I^k \). Define the distance \(\rho \) between two points \(x, y \) of \(|K|\) so that if \(x, y \) are in a common cube \(I^k \), then
\[
\rho(x, y) = \max \{|x_i - y_i| \mid i = 1, 2, \ldots, k\},
\]
where \(x = (x_1, x_2, \ldots, x_k), y = (y_1, y_2, \ldots, y_k) \in I^k \),
otherwise the distance is the length of the shortest path joining them (see [9]). Then \(\rho \) is a convex metric. A connected subset \(Y \) of \(|K|\) is GC (see [9]) if for any cube \(I^k \) of \(K \) either \(Y \cap I^k = \emptyset \) or for some \(0 \leq s_i \leq t_i \leq 1 \) (\(i = 1, 2, \ldots, k \))
\[
Y \cap I^k = \{(y_1, y_2, \ldots, y_k) \in I^k \mid s_i \leq y_i \leq t_i \ (i = 1, 2, \ldots, k)\}.
\]

A cubical complex \(K \) is regular collapsible [9] if there are a sequence of subcomplexes \(K_0, K_1, \ldots, K_n \) of \(K \) and nonempty subcomplexes \(L_i \) of \(K_i \) such that \(K_0 \) is a one-point set, \(K_n = K \) and
\[
K_{i+1} = K_i \cup (L_i \times I),
\]
where
\[
L_i \times I = \{c \times \{0\}, c \times I, c \times \{1\} \mid c \in L_i\},
\]
and each \(|L_i|\) is GC of \(K_i \). A cubical complex \(K \) is locally regular collapsible if for any \(x \in |K| \) there is a regular collapsible subcomplex \(L \) of \(K \) such that \(x \in \text{Int} |L| \).

In [9], Mai and Tang proved that if \(P \) is a collapsible simplicial polyhedron, then there is a regular collapsible cubical complex \(K \) such that \(|K| = P \). Also, they proved that the metric \(\rho \) as above is a hyperconvex metric. Hence, by (2.1) and the proof of (1.2) (see [6]), we have

(3.1) Theorem. Let \(P \) be a finite collapsible polyhedron. Then there exists a strongly admissible Whitney map \(\omega \) for \(\mathcal{H} = 2^\mathcal{P} \) or \(C(P) \). Moreover, \(\omega|\omega^{-1}((0, \omega(P))) \) is a trivial bundle map with Hilbert cube fibers, where if \(\mathcal{H} = C(P) \), assume that \(P \) contains no free arc.
Also, by (2.2) we have

(3.2) **Theorem.** Let \(K \) be a cubical complex and let \(|K| = P\). If \(K \) is locally regular collapsible, then there is a Whitney map \(\omega \) for \(\mathcal{H} = 2^p \) or \(C(P) \) such that for some \(t_0 \in (0, \omega(P)) \) there is a homotopy

\[
h: \omega^{-1}([0, t_0]) \times I \to \omega^{-1}([0, t_0])
\]

satisfying the conditions (A1)', (A2)' and (A3)' in (2.2). Moreover, \(\omega|\omega^{-1}((0, t_0)) \) is a trivial bundle map with \(P \times Q \) fibers, where if \(\mathcal{H} = C(P) \), assume that \(P \) contains no free arc.

Next, we study Whitney maps of 1-dimensional ANRs.

(3.3) **Lemma.** If \(X \) is a compact 1-dimensional AR (= dendrite), then \(X \) admits a hyperconvex metric. If \(X \) is a compact connected 1-dimensional ANR, then \(X \) admits a locally hyperconvex metric.

Proof. Suppose that \(X \) is a compact 1-dimensional AR. By (2.1) in [4] we can conclude that if any collection \(\{A_i\}_{i=1}^n \) of subcontinua of \(X \) satisfies the condition \(A_i \cap A_j \neq \emptyset \), then

\[
\bigcap_{i=1}^n A_i \neq \emptyset.
\]

Since \(X \) is a Peano continuum, \(X \) admits a convex metric \(q \). Then, for any \(x \in X \) and \(\epsilon > 0 \), \(S(x, \epsilon) \) is a subcontinuum of \(X \). Hence we see that \(q \) is hyperconvex. Suppose that \(X \) is a compact 1-dimensional ANR. Let \(q \) be a convex metric on \(X \). By (13.6) in [2], there is a positive number \(\epsilon > 0 \) such that \(S(x, \epsilon) \) is a 1-dimensional AR for each \(x \in X \). Hence \(q|S(x, \epsilon) \) is hyperconvex, which implies that \(q \) is a locally hyperconvex metric.

(3.4) **Lemma.** If \(X_i \) (\(i = 1, 2 \)) admits a hyperconvex metric (resp., locally hyperconvex metric) \(q_i \), then \(X_1 \times X_2 \) admits a hyperconvex metric (resp., locally hyperconvex metric) \(q \), where

\[
q(x, y) = \max \{q_i(x_i, y_i) \mid x = (x_1, x_2), y = (y_1, y_2) \text{ and } i = 1, 2\}.
\]

(3.5) **Corollary.** Let \(X_i \) (\(i = 1, 2, \ldots, n \)) be the \(m(i) \)-sphere (\(m(i) \geq 1 \)) and let \((X_{n+1}, q_{n+1})\) be a locally hyperconvex metric continuum. Suppose that

\[
X = \prod_{i=1}^{n+1} X_i.
\]

Then there is a Whitney map \(\omega \) for \(\mathcal{H} = 2^X \) or \(C(X) \) such that \(\omega|\omega^{-1}((0, t_0)) \) is a trivial bundle map with \(X \times Q \) fibers for some \(t_0 \in (0, \omega(X)) \).

Outline of proof. Assume that

\[
X_i = \{x = (x_0, x_1, \ldots, x_{m(i)}) \in \mathbb{R}^{m(i)+1} \mid \|x\| = 1\}.
\]
We define a metric ϱ_i on X_i by

$$\varrho_i(x, y) = \arccos \left[\sum_{j=0}^{m(i)} x_j y_j \right]$$

for

$$x = (x_0, x_1, \ldots, x_{m(i)}), \ y = (y_0, y_1, \ldots, y_{m(i)}) \in X_i.$$

Define a metric ϱ on X by

$$\varrho(x, y) = \max \{ \varrho_i(x_i, y_i) \mid i = 1, 2, \ldots, n+1 \}$$

for

$$x = (x_1, x_2, \ldots, x_{n+1}), \ y = (y_1, y_2, \ldots, y_{n+1}) \in X.$$

Let ω be the Whitney map for \mathcal{H} which is defined by (*) and the metric ϱ. By the similar way as in the proofs of (2.1) and (2.2), we can conclude that ω satisfies the desired conditions.

In the statements of (2.2), (3.2) and (3.5), we cannot conclude that $\tau_0 = \omega(X)$. We have the following

(3.6) Proposition. Let X be a compact connected ANR but not AR. Let $\mathcal{H} = 2^X$ or $C(X)$. If $\mathcal{H} = C(X)$, assume that X contains no free arc. Then for any Whitney map ω for \mathcal{H} there is no homotopy

$$h: \omega^{-1}([0, \omega(X)]) \times I \to \omega^{-1}([0, \omega(X)])$$

satisfying the conditions (A1)' and (A2)' in (2.2).

Proof. Suppose, on the contrary, that such a homotopy h exists. Since \mathcal{H} is homeomorphic to the Hilbert cube Q,

$$\omega^{-1}([0, \omega(X)]) = Q - \{ * \} = Q \times [0, 1].$$

Hence $\omega^{-1}([0, \omega(X)])$ is contractible. Let $f: \omega^{-1}([0, \omega(X)]) \to F_1(X) (= X)$ be a map defined by $f(A) = h(A, 0)$ for each $A \in \omega^{-1}([0, \omega(X)])$ (see (A1)'). Then (A2)' implies that $f|F_1(X) \simeq 1_{F_1(X)}$. Since X is an ANR, by Borsuk's homotopy extension theorem (see [2]), there is a retraction

$$r: \omega^{-1}([0, \omega(X)]) \to F_1(X).$$

Thus X is contractible, and hence X is an AR (see [2]). This is a contradiction.

(3.7) Example. Let S^1 be the unit circle in the plane R^2 and let ϱ be the arc length metric on S^1. Suppose that ω is the Whitney map for 2^{S^1} defined by (*) and the metric ϱ. Then $\omega|\omega^{-1}([0, \pi/2])$ is a trivial bundle map with $S^1 \times Q$ fibers, but $\omega|\omega^{-1}([0, \pi/2])$ is not a trivial bundle map; in fact, it is not an open map. Let $A \in \omega^{-1}([0, \pi/2])$. First, we shall show that
there are points \(r_1(A) \) and \(r_2(A) \) of \(A \) such that
\[
q(r_1(A), r_2(A)) < \pi \quad \text{and} \quad A \subset [r_1(A), r_2(A)],
\]
where if \(x, y \in S^1 \), then
\[
[x, y] = \{ z \in S^1 | q(x, z) + q(z, y) = q(x, y) \}.
\]

If \(|A| \leq 2 \) (where \(|A| \) denotes the cardinality of \(A \)), it is easily seen that
\((\#)\) is true. Let \(|A| \geq 3 \). Suppose, on the contrary, that \((\#)\) is not true for
some \(\varnothing \in \omega^{-1}([0, \pi/2]) \). Choose a point \(a \in A \) and let \(a' \) be the point of \(S^1 \)
such that \(q(a, a') = \pi \). Then \(A \) does not contain \(a' \). Let \(S_a \) and \(S_{a'} \) denote the
path components of \(S^1 - \{a, a'\} \). Choose the point \(b \in A \cap S_a \) such that
\(A \cap S_a \subset [a, b] \). Then there is a point \(c \in A \cap S_b \), where \(S_b \) does not contain
\(a \). Note that if \(x \in \{a, b, c\} \), then \(\{x, x'\} \) separates \(S^1 \) between the other two
points \(\{a, b, c\} - \{x\} \). Then we have
\[
\omega(A) \geq \omega(\{a, b, c\}) = (1/2) \max \{q(a, b), q(b, c), q(c, a)\} + (1/4) \min \{q(a, b), q(b, c), q(c, a)\} \geq \pi/2.
\]
This is a contradiction. By \((\#)\) we can easily see that there is a homotopy
\[
h: \omega^{-1}([0, \pi/2]) \times I \rightarrow \omega^{-1}([0, \pi/2])
\]
satisfying the conditions \((A1)', (A2)' \) and \((A3)' \) in (2.2). Hence \(\omega|\omega^{-1}([0, \pi/2]) \)
is a trivial bundle map with \(S^1 \times \mathbb{Q} \) fibers. Let
\[
x_1 = (1, 0), \quad x_2 = (-1/2, \sqrt{3}/2), \quad x_3 = (-1/2, -\sqrt{3}/2)
\]
and let \(A = \{x_1, x_2, x_3\} \). Then \(\omega(A) = \pi/2 \). In [5], (4.15), Goodykoontz and
Nadler pointed out the following fact: there is a neighborhood \(\mathcal{U} \) of \(A \) in \(2^{S^1} \)
such that if \(B \in \mathcal{U} \), then \(\omega(B) \geq \pi/2 \). This implies that \(\omega|\omega^{-1}([0, \pi/2]) \) is not
an open map.

The following problems remain open:

(i) Let \(X \) be a compact AR. Is there a strongly admissible Whitney map
for \(\mathcal{H} = 2^X \) or \(C(X) \)? (see [6], (3.4)). (P 1358)

(ii) Let \(X \) be a compact ANR (or polyhedron). Is there a Whitney map
\(\omega \) for \(\mathcal{H} = 2^X \) or \(C(X) \) such that for some \(t_0 \in (0, \omega(X)) \) there is a homotopy
\[
h: \omega^{-1}([0, t_0]) \times I \rightarrow \omega^{-1}([0, t_0])
\]
satisfying the conditions \((A1)', (A2)' \) and \((A3)' \) in (2.2)? (P 1359)

REFERENCES

FACULTY OF INTEGRATED ARTS AND SCIENCES
HIROSHIMA UNIVERSITY
HIGASHISENDA-MACHI, NAKA-KU
HIROSHIMA, 730 JAPAN

Reçu par la Rédaction le 15.10.1985; en version modifiée le 30.1.1987