Functional equations of delay type in L^1 spaces

by Rosanna Villella-Bressan (Padova, Italy)

Abstract. The functional equation $x(t) = F(x_t)$, $x_0 = \varphi$, where φ belongs to $L^1(-r, 0; X)$, X a Banach space, is related to the semigroups generated by the operator $A\varphi = -\varphi'$, $D_A = \{\varphi \in W^{1,1}(-r, 0; X), \varphi(0) = F(\varphi)\}$. From the properties of the semigroup, regularity and asymptotic results for the solutions are deduced.

1. Introduction. In this paper we consider the functional equation of delay type

$$x(t) = F(x_t), \quad t \geq 0, \quad x_0 = \varphi,$$

with initial data φ in $L^1(-r, 0; X)$. Here X is a real Banach space, $r, 0 < r < +\infty$, is the delay and $x_t \in L^1(-r, 0; X)$ is the history of $x(t)$ at time t, $x_t(\theta) = x(t+\theta)$ a.e. Equation (FE) is studied by associating with it the operator in $L^1(-r, 0; X)$

$$A\varphi = -\varphi', \quad D_A = \{\varphi \in W^{1,1}(-r, 0; X), \varphi(0) = F(\varphi)\}.$$

We prove that if F is Lipschitz continuous, then A generates a semigroup $T(t)$.

By relating $T(t)$ to the semigroup generated in $C(-r, 0; X)$ by solutions with continuous initial data, we prove that $T(t)\varphi$ gives the segments of solutions of (FE). From the properties of the semigroup we then deduce regularity and asymptotic results for the solutions.

The semigroup approach to (FE) in the case of continuous initial data has been discussed in [3] and [8]. In [6] the particular case $F(\varphi) = H(\varphi(-r))$, $H: X \to X$, was considered in L^p spaces. In [9] and [10] the nonautonomous case $F(t, \varphi) = \int_0^t g(-\theta, \varphi(\theta))d\theta$ was studied as a semigroup of operators in the product space $L^p \times X$. Our results are also related to the semigroup approach to age dependent population problems ([11]).

We suppose that

$$(H) \quad F: L^1(-r, 0; X) \to X \quad \text{is Lipschitz continuous with constant } |F|;$$

we associate with (FE) the operator A and prove the following theorem:

Theorem 1. Let F satisfy (H). Then $A + |F|I$ is m-accretive in
$L^1(-r, 0; X)$ and therefore generates a semigroup of operators, $T(t)$. $T(t)\varphi$ is continuous in $]-\infty, 0]$ and if we set
\[
x(t) = \begin{cases}
\varphi(t), & -r < t < 0, \\
F(\varphi), & t = 0, \\
T(t)\varphi(0), & t > 0;
\end{cases}
\]
x(t) is the unique solution of (FE). Such a solution is continuous for $t > 0$ and continuous from the right at $t = 0$.

To obtain information on the behaviour of solution we consider then the weighted spaces $L^1_\rho = L^1(-r, 0; e^{-\sigma^\rho}; X)$ and prove that if $|F|r \leq e^{-1}$, then there exist $\omega \leq 0$ and $\sigma \in \mathbb{R}$ such that $A + \omega I$ is m-accretive in L^1_ρ; more precisely, we can choose $\omega = \frac{1}{r} \log |F| r$ and $\sigma = -1/r$. Note that from Theorem 1 we have that, if $t \geq r$, $T(t)\varphi$ is continuous and the behaviour of solutions is known for all $\varphi \in L^1$ if it is known for continuous initial data. We deduce, using results in [3], that if $|F|r < 1$ then there exists a unique "equilibrium" solution of (FE) and this solution is exponentially asymptotically stable.

Theorem 1 says, in particular, that the sets $M = \{ \varphi \in C(-r, 0; X), \varphi(0) = F(\varphi) \}$ and $M_1 = \{ \varphi: [-r, 0] \to X, \varphi \text{ is piecewise continuous} \}$ are flow-invariant, that is, $T(t)M \subseteq M$ and $T(t)M_1 \subseteq M_1$. The following sets which extend D_A are also flow-invariant
\[
D_{A,\sigma} = \left\{ \varphi \in L^1(-r, 0; X), \lim_{\lambda \to 0} \frac{\|\varphi-(I+\lambda A)^{-1}\varphi\|}{\lambda^\sigma} < +\infty \right\}.
\]
We shall see that
\[
D_{A,\sigma} = \left\{ \varphi \in L^1(-r, 0; X): \int_{-r}^{-t}\int_0^0 |\varphi(t+s)-\varphi(s)|ds + \int_{-t}^{0} |\varphi(s)|ds \leq t^\sigma K_{\varphi} \right\},
\]
and hence the sets $D_{A,\sigma}$ do not depend on F. This is the crucial difference between the cases of initial data in $C(-r, 0; X)$ and $L^1(-r, 0; X)$; and so in the L^1 spaces it is possible to use the Crandall–Pazy theory on nonlinear semigroups to study the non-autonomous version of (FE). This will be done in a join paper with G. F. Webb.

2. The semigroup associated with (FE). In this section we study the equation
\[
(FE) \quad x(t) = F(x(t)), \quad t > 0, \quad x_0 = \varphi,
\]
where $F: L^1 = L^1(-r, 0; X) \to X$ and $\varphi \in L^1$, by relating the semigroup associated with (FE) in L^1 to the semigroup generated in $C(-r, 0; X)$ by solutions with continuous initial data.
We denote by $| \cdot |$ the norm in X and by $\| \cdot \|$ the usual norm in L^1.

We consider the operator

$$A\varphi = -\varphi', \quad D_A = \{ \varphi \in W^{1,1}(-r, 0; X) ; \varphi(0) = F(\varphi) \}$$

and prove that

Proposition 1. Let F satisfy (H). Then $A + |F| I$ is m-accretive in L^1.

Moreover, $D_A = L^1$.

Proof. Let $\varphi_1, \varphi_2 \in D_A$ and set $\psi_i = (I + \lambda A) \varphi_i = \varphi_i - \lambda \varphi'_i$, $i = 1, 2$, $\varphi = \varphi_1 - \varphi_2$ and $\psi = \psi_1 - \psi_2$. Then

$$\|\varphi\| = \|e^{\beta x} \varphi(0) + \int_0^x (e^{(\beta - n)/\lambda} \lambda) \psi(s) ds\|$$

$$\leq |\varphi(0)| \|e^{\beta x}\| + \int_0^x (e^{(\beta - n)/\lambda} \lambda) \psi(s) ds\|$$

$$\leq |F(\varphi_1) - F(\varphi_2)| (1 - e^{-r/\lambda}) \lambda + \|\psi\| \lambda + \|\psi\| \lambda$$

hence, if $|F| \lambda < 1$,

$$\|\varphi\| \leq \frac{1}{1 - \lambda |F|} \|\psi\|$$

and $A + |F| I$ is accretive.

In order to prove that $A + |F| I$ is m-accretive, choose $\lambda > 0$ such that $\lambda (1 - e^{-r/\lambda}) |F| < 1$ and define, for a given $\psi \in Y$,

$$H : X \to X, \quad H(x) = F(e^{\beta x} x + \int_0^x (e^{(\beta - n)/\lambda} \lambda) \psi(s) ds).$$

We have

$$|H(x_1) - H(x_2)| \leq |F| \|e^{\beta x}(x_1 - x_2)\| = |F| \lambda (1 - e^{-r/\lambda}) |x_1 - x_2|$$

hence H is a contraction, and if \bar{x} is the unique fixed point of H, the function $\bar{\varphi}(x) = e^{\beta x} \bar{x} + \int_0^x (e^{(\beta - n)/\lambda} \lambda) \psi(s) ds$ belongs to D_A and is such that $(I + \lambda A) \bar{\varphi} = \psi$.

That $D_A = L^1$ is consequence of the following lemma.

Lemma 1. For all $\psi \in L^1$

$$\lim_{\lambda \to 0} (I + \lambda A)^{-1} \psi = \psi.$$

Proof. Let A_0 be the operator

$$A_0 \varphi = -\varphi', \quad D_{A_0} = \{ \varphi \in W^{1,1}(-r, 0; X) ; \varphi(0) = 0 \}.$$
We have
\[
||\psi - (I + \lambda A)^{-1} \psi|| = ||\psi(\emptyset) - e^{\lambda t}(I + \lambda A)^{-1} \psi(0) - \int_{0}^{\emptyset} (e^{\lambda t-x/s}) (I + \lambda A)^{-1} \psi(s) \, ds||
\lessgtr ||e^{\lambda t}(I + \lambda A)^{-1} \psi(0)|| + ||\psi - (I + \lambda A_0)^{-1} \psi||
= ||(I + \lambda A)^{-1} \psi(0)|| \lambda (1 - e^{-n/2}) + ||\psi - (I + \lambda A_0)^{-1} \psi||
\lessgtr (||F(\psi)|| + ||F|| ||\psi - (I + \lambda A)^{-1} \psi||) \lambda (1 - e^{-n/2}) +
\quad + ||\psi - (I + \lambda A_0)^{-1} \psi||
\]

Hence, for \(\lambda \) small,
\[
||\psi - (I + \lambda A)^{-1} \psi|| \leq \frac{1}{1 - \lambda (1 - e^{-n/2}) ||F||} \left(\lambda (1 - e^{-n/2}) ||F(\psi)|| +
\quad + ||\psi - (I + \lambda A_0)^{-1} \psi|| \right)
\]
and the right part tends to zero as \(\lambda \to 0 \).

It follows in particular that

Lemma 2. For all \(\psi \in L^1 \), \(||(I + \lambda A)^{-1} \psi(0)|| \) is bounded as \(\lambda \to 0 \).

Proof. We have
\[
\lim_{\lambda \to 0} (I + \lambda A)^{-1} \psi(0) = \lim_{\lambda \to 0} F((I + \lambda A)^{-1} \psi) = F(\psi)
\]
as \(F \) is continuous. And so \(\lim_{\lambda \to 0} ||(I + \lambda A)^{-1} \psi(0)|| = ||F(\psi)||. \)

From Proposition 1 it follows that \(A \) generates a semigroup of operators, \(T(t) \), in \(L^1 \).

Let \(C_\omega \) denote the space of continuous functions in \([-r, 0]\) with values in \(X \) endowed with the norm \(|||\psi|||_\omega = \sup_{-r < \theta < 0} e^{-\omega \theta} |\psi(\emptyset)| \)\. We prove that if we consider the restrictions of \(F \) and \(A \) to \(C \) and define the operator
\[
\tilde{A} \phi = -\phi', \quad D\tilde{A} = \{ \phi \in C^1 (-r, 0; X), \phi(0) = F(\phi) \},
\]
then \(\tilde{A} \) generates a semigroup of operators, \(\tilde{T}(t) \), in \(C_\omega \), for some \(\omega \in \mathbb{R} \), which can be identified with the restriction of \(T(t) \) to the set \(M = \{ \phi \in C, \phi(0) = F(\phi) \} \).

We first prove that

Proposition 2. Let \(F : L^1 \to X \) satisfy (H). Then there exist \(\omega \in \mathbb{R} \) such that \(F_{\omega} : C_{\omega} \to X \) is Lipschitz continuous with constant \(\gamma_{\omega} < 1 \).

Proof. Let \(0 < p < r \) such that \(|F| : p < 1 \). Then if \(\phi, \psi \in C \),
\[
|F(\phi) - F(\psi)| \leq |F| \int_{-r}^{0} |\phi(\emptyset) - \psi(\emptyset)| \, d\emptyset
\lessgtr |F| \int_{-r}^{-p} |\phi(\emptyset) - \psi(\emptyset)| \, d\emptyset + |F| \int_{-p}^{0} |\phi(\emptyset) - \psi(\emptyset)| \, d\emptyset
\lessgtr |F|(r - p) \sup_{-r \leq \emptyset \leq -p} |\phi(\emptyset) - \psi(\emptyset)| + |F| \cdot p \cdot ||\phi - \psi||_0
\]
and the result follows from Proposition 2 of [8]. Note that any
\[\omega > \max \left\{ 0, \frac{1}{p} \log \frac{|F(r-p)|}{1-|F| p} \right\} \]
would do.

It follows from Theorems 4 and 5 of [3] that \(\tilde{A} + \omega I \) is \(m \)-accretive in \(C \).
Let \(\mathcal{T}(t) \) be the semigroup generated by \(\tilde{A} \); then set
\[\tilde{x}(t) = \begin{cases} \varphi(t), & -r \leq t < 0, \\ \mathcal{T}(t) \varphi(0), & t \geq 0, \end{cases} \]
we have that \(\tilde{x} = \mathcal{T}(t) \varphi \) and \(\tilde{x}(t) \) is the unique solution of \(x(t) = F(x(t)), \)
\(x_0 = \varphi, \varphi \in C, \varphi(0) = F(\varphi) \). Hence if \(T(t) \) is the semigroup generated by the
solutions of (FE), it must be \(T(t) \varphi = \mathcal{T}(t) \varphi \) for all \(\varphi \in C \) such that \(\varphi(0) = F(\varphi) \).
And, in fact, we prove that

Proposition 3. Let \(T(t) \) and \(\mathcal{T}(t) \) be the semigroups generated respectively
by \(A \) and \(\tilde{A} \). Then, for all \(\varphi \in D_A = \{ \varphi \in C, \varphi(0) = F(\varphi) \} \), \(T(t) \varphi \) is continuous
and \(T(t) \varphi = \mathcal{T}(t) \varphi, \forall t \geq 0 \).

Proof. For all \(\varphi \in D_A \) we have \((I + \lambda A)^{-1} \varphi = (I + \lambda \tilde{A})^{-1} \varphi \), and hence
\[\mathcal{T}(t) \varphi = (C) - \lim_{n \to \infty} \left(I + \frac{t}{n} \tilde{A} \right)^{-n} \varphi = (L^1) - \lim_{n \to \infty} \left(I + \frac{t}{n} A \right)^{-n} \varphi = T(t) \varphi, \]
as \(\psi_n \overset{C}{\to} \psi \) implies \(\psi_n \overset{L^1}{\to} \psi \).

Since \(D_A \subset D_{\tilde{A}} \) from Proposition 1, it follows that, given \(\varphi \in L^1 \), there
exists \(\varphi_n \in D_A \) such that \(\varphi_n \overset{L^1}{\to} \varphi \); hence \(T(t) \varphi_n \overset{L^1}{\to} T(t) \varphi \) for all \(t \geq 0 \).

For all fixed \(t \geq 0 \) we can suppose that
\[
(2) \quad \varphi_n(t) \to \varphi(t) \quad \text{a.e.} \quad -r < t < 0,
T(t) \varphi_n(t) \to T(t) \varphi(t) \quad \text{a.e.} \quad t + \delta > 0.
\]

We know that
\[\tilde{T}(t) \varphi_n(t) = \begin{cases} \varphi_n(t + \delta), & t + \delta < 0, \\ F(\tilde{T}(t + \delta) \varphi_n), & t + \delta \geq 0, \end{cases} \]
hence from Proposition 3,
\[T(t) \varphi_n(t) = \begin{cases} \varphi_n(t + \delta), & t + \delta < 0, \\ F(T(t + \delta) \varphi_n), & t + \delta \geq 0, \end{cases} \]
and so
\[\lim_{n \to \infty} T(t) \varphi_n(t) = \begin{cases} \varphi(t + \delta), & \text{a.e.,} \quad t + \delta < 0, \\ F(T(t + \delta) \varphi), & t + \delta \geq 0, \end{cases} \]
and from (2)

\[T(t) \varphi(\theta) = \begin{cases} \varphi(t + \theta) & \text{a.e., } t + \theta < 0, \\ F(T(t + \theta) \varphi) & \text{a.e., } t + \theta > 0. \end{cases} \]

Set

\[x(t) = \begin{cases} \varphi(t), & -r \leq t < 0, \\ F(T(t) \varphi), & t \geq 0; \end{cases} \]

then \(x_{|[0, +\infty[} \) is continuous as \(T(t) \varphi \) is continuous in \(t \) and \(F \) is continuous. Moreover, from (3) we have

\[x_t(\theta) = x(t + \theta) = T(t) \varphi(\theta) \quad \text{a.e., } -r \leq \theta < 0, \]

that is, \(x_t = T(t) \varphi \). It follows that \(T(t) \varphi \) is continuous if \(t \geq r \), and continuous in \(]-r, 0[\) if \(t < r \) and that \(x(t) \) can also be defined as

\[x(t) = \begin{cases} \varphi(t), & \text{a.e., } t \in [-r, 0[, \\ F(\varphi), & t = 0, \\ T(t) \varphi(0), & t > 0, \end{cases} \]

and is a solution of \((\text{FE})'\).

Any solution \(x(t) \) of \((\text{FE})'\) which is \(L^1_{\text{loc}}(-r, \infty; X) \) is continuous for \(t \geq 0 \) if \(F : L^1 \to X \) is continuous, as \(t \to x_t, [0, \infty[\to L^1 \) is continuous. Moreover, if \(F \) is Lipschitz continuous, then the solution is unique: let \(x(t) \) and \(\tilde{x}(t) \) be solutions of \((\text{FE})\). Then for \(0 < t \leq r \)

\[|x(t) - \tilde{x}(t)| \leq |F||x_t - \tilde{x}_t| = |F| \int_0^t |x(s) - \tilde{x}(s)| ds \]

and from Gronwall's lemma, \(x(t) = \tilde{x}(t) \) for \(0 \leq t \leq r \). In the same way one can prove that \(x(t) = \tilde{x}(t) \) for \(r \leq t \leq 2r \), and so on. And Theorem 1 is proved.

3. Asymptotic results. The semigroup generated by \(A \) in \(L^1 \) is of type \(|F|\), that is,

\[\|T(t) \varphi - T(t) \psi\| \leq e^{[F]}\| \varphi - \psi\|, \quad \varphi, \psi \in L^1, \]

and as \(|F| > 0\), the information on the behaviour of solutions given by (4) is not in general satisfactory. Hence we consider the weighted space \(L^1_{\omega} = L^1(-r, 0; e^{-\sigma \theta}; X) \), that is, the space \(L^1(-r, 0; X) \) endowed with the norm \(\|\varphi\|_{\omega} = \int_0^r e^{-\sigma \theta}|\varphi(\theta)| d\theta \), and we prove that if \(|F|\) is small enough, then there exist \(\omega \leq 0 \) and \(\sigma \) such that \(A + \omega I \) is \(m\)-accretive in \(L^1_{\sigma} \) and therefore the semigroup generated by \(A \) in \(L^1_{\sigma} \) is of type \(\omega \leq 0 \). We prove first

PROPOSITION 4. Let \(F \) satisfy condition \((H)\). If \(|F| r \leq e^{-1} \), then \(A \) is \(m\)-accretive in \(L^1_{\sigma} \) for all \(\sigma \) such that \(\sigma e^{\sigma r} \leq |F| \).
Proof. We have
\[|F(\varphi_1) - F(\varphi_2)| \leq |F| |\varphi_1 - \varphi_2| \]
\[= |F| \int_0^\sigma e^{\sigma \vartheta} e^{-\alpha \vartheta} |\varphi_1(\vartheta) - \varphi_2(\vartheta)| d\vartheta \]
\[\leq |F| \max \{1, e^{-\alpha \sigma}\} |\varphi_1 - \varphi_2|_\sigma. \]
Hence if \(\sigma \leq 0 \), then \(|F|_\sigma \leq |F| e^{-\alpha \sigma} \), where \(|F|_\sigma \) is the Lipschitz constant of \(F: \mathbb{L}^1_\sigma \to X \).

Let \(\varphi_i \in D_A \), \(\psi_i = \varphi_i - \lambda \varphi'_i \), \(i = 1, 2 \), \(\varphi = \varphi_1 - \varphi_2 \), \(\psi = \psi_1 - \psi_2 \). Then
\[|\varphi(\vartheta)| e^{-\alpha \vartheta} \leq |\varphi(0)| e^{(1 - \sigma)\vartheta/\lambda} + \int_0^\vartheta e^{-\alpha s} |\psi(s)| (e^{(1 - \sigma)\lambda/\lambda}(\vartheta - s)/\lambda) ds \]
and so
\[(5) \|\varphi\|_\sigma \leq |F|_\sigma \|\varphi\|_\sigma \int_0^\sigma e^{(1 - \sigma)\vartheta/\lambda} d\vartheta + \int_0^\sigma e^{-\alpha s} |\psi(s)| (\int_0^s (e^{(1 - \sigma)\lambda}(\vartheta - s)/\lambda) d\vartheta) ds \]
\[\leq |F|_\sigma \|\varphi\|_\sigma \frac{\lambda}{1 - \sigma \lambda} (1 - e^{(1 - \sigma)\lambda}(-\vartheta/\lambda)) + \frac{\|\psi\|_\sigma}{1 - \sigma \lambda} (1 - e^{(1 - \sigma)\lambda}(-\vartheta/\lambda)) \]
We have
\[(6) \frac{1 - \frac{\lambda}{1 - \sigma \lambda} (1 - e^{(1 - \sigma)\lambda}(-\vartheta/\lambda))}{1 - \sigma \lambda} \geq \frac{1}{1 - \sigma \lambda} (1 - e^{(1 - \sigma)\lambda}(-\vartheta/\lambda)) \]
provided \(\sigma + |F|_\sigma \leq 0 \). Hence if \(\sigma + |F|_\sigma \leq 0 \), that is, if \(\sigma e^{\sigma r} < -|F| \), then \(\|\varphi\|_\sigma \leq \|\psi\|_\sigma \) and \(A \) is accretive in \(\mathbb{L}^1_\sigma \). Note that the minimum of \(\sigma e^{\sigma r} \) is \(-e \cdot r \); hence such a \(\sigma \) exists only if \(-(e \cdot r)^{-1} \leq -|F| \), i.e. \(|F| \cdot r \leq e^{-1} \).

If \(|F| \cdot r = e^{-1} \) there is only one \(\sigma \) which satisfies Proposition 4, \(\sigma = -1/r \). If \(|F| \cdot r < e^{-1} \) we can sharpen the result of Proposition 4, that is, we can choose \(\omega < 0 \) such that \(A + \omega I \) is \(\mu \)-accretive in \(\mathbb{L}^1_\sigma \).

Proposition 5. Let \(F \) satisfy (H) and let \(|F| \cdot r < e^{-1} \). If \(\omega = \frac{1 + \log r |F|}{r} \) and \(\sigma = \omega - 1/r \), then \(A + \omega I \) is \(\mu \)-accretive in \(\mathbb{L}^1_\sigma \).

Proof. We have to prove that if \(\varphi_1, \varphi_2 \in D_A \) and \(\varphi = \varphi_1 - \varphi_2 \), then
\[(7) \|\varphi\|_\sigma \leq \frac{1}{1 - \lambda \omega} \|\varphi - \lambda \varphi'\|_\sigma \]
for \(\lambda > 0 \) small.
From (5) we have to verify, instead of (6), the following

\[1 - \frac{\lambda |F|_\sigma}{1 - \sigma \lambda} \left(1 - e^{(1 - \sigma \lambda)(-\sigma)/\lambda} \right) \geq \frac{1 - \omega \lambda}{1 - \sigma \lambda} \left(1 - e^{(1 - \sigma \lambda)(-\sigma)/\lambda} \right), \]

that is,

\[(\lambda |F|_\sigma + 1 - \omega \lambda) e^{(1 - \sigma \lambda)(-\sigma)/\lambda} \geq \lambda (\sigma - \omega + |F|_\sigma), \]

which is satisfied if \(\sigma - \omega + |F|_\sigma \leq 0 \). And

\[\sigma - \omega + |F|_\sigma \leq \sigma - \omega + |F| e^{-\sigma r} = \sigma - \omega + |F| e^{-\omega r} e^{-\sigma r} = 0 \]

if \(\sigma - \omega = -1/\rho \) and \(|F| e^{-\omega r} = (r \cdot e)^{-1} \).

Note that for all \(\varphi, \psi \in C \)

\[|F(\varphi) - F(\psi)| \leq |F| ||\varphi - \psi|| \leq |F| \cdot r ||\varphi - \psi||_0, \]

that is, \(F|_C : C \to X \) is Lipschitz continuous with constant \(|F| \cdot r \). Let \(|F| \cdot r < 1 \); then \(F|_X \) is a contraction and therefore has a unique fixed point \(\varphi_0 \).

And \(\varphi_0(t) = \varphi_0, \ t \geq -r \), is the unique constant solution of (FE). Moreover, as it is proved in [3], we can choose \(\omega < 0 \) such that \(\lambda + \omega I \) is \(m \)-accretive in \(C_\omega \) and from Proposition 3 it follows that, for \(t \geq r \), \(\varphi \in L^1 \),

\[||T(t) \varphi - T(t) \varphi_0||_\omega = ||\tilde{T}(t-r) T(r) \varphi - \tilde{T}(t-r) \varphi_0||_\omega \leq e^{(t-r)\omega} ||T(r) \varphi - \varphi_0||_\omega. \]

Hence if \(x(t) \) is the solution of (FE) with initial data \(\varphi \), we have

\[|x(t) - \varphi_0| \leq e^{\omega t} e^{-r\omega} ||T(r) \varphi - \varphi_0||_\omega \]

and \(\varphi_0 \) is exponentially asymptotically stable.

4. Flow-invariant sets. Regularity results. In Section 2 it is implicitly proved that the sets \(M = \{ \varphi \in C, \varphi(0) = F(\varphi) \} \) and \(M_1 = \{ \varphi: [-r, 0] \to X, \) is piecewise continuous \(\} \) are flow-invariant in the sense that \(T(t) M \subset M \) and \(T(t) M_1 \subset M_1 \) for all \(t \geq 0 \). The following sets which extend \(\Delta \) are clearly flow-invariant

\[D_{\Delta, \sigma} = \left\{ \varphi \in L^1: \lim_{t \to 0} \frac{||\varphi - T(t) \varphi||_\sigma}{t^\sigma} < +\infty \right\}, \quad 0 < \sigma \leq 1, \]

and so are the sets

\[D_{\Delta, \sigma} = \left\{ \varphi \in M, \lim_{t \to 0} \frac{||\varphi - T(t) \varphi||_\sigma}{t^\sigma} < +\infty \right\}, \quad 0 < \sigma \leq 1, \]

as follows from the results of Section 2. It is easy to prove ([7]) that

\[D_{\Delta, \sigma} = \{ \varphi \in C \text{ is Hölder continuous with exponent } \sigma, \varphi(0) = F(\varphi) \} \]
for $0 < \sigma < 1$ and that
\[D_{A,1} = \{ \varphi \in C \text{ is Lipschitz continuous, } \varphi(0) = F(\varphi) \}, \]
and so if initial data are in M and are Lipschitz or H"older continuous, then solutions are respectively Lipschitz or H"older continuous on bounded sets. The following proposition characterizes the sets $D_{A,\sigma}$.

Proposition 6. For all σ, $0 < \sigma \leq 1$, we have
\[D_{A,\sigma} = D_{A_0,\sigma} = \{ \varphi \in L^1, \quad -t \int_0^t \| \varphi(t + \theta) - \varphi(0) \| \, d\theta + \int_{-t}^0 \| \varphi(\theta) \| \, d\theta \leq K_{\varphi} t^\sigma \}, \]
where K depends on φ and σ.

Proof. Let $\psi \in D_{A_0,\sigma}$, so that
\[\lim_{\lambda \to 0} \frac{\| \psi - (I + \lambda A_0)^{-1} \psi \|}{\lambda^\sigma} = K < +\infty \]
([1], [5]). Set $\varphi = (I + \lambda A)^{-1} \psi$; we have
\[\frac{\| \psi - \varphi \|}{\lambda^\sigma} \leq \frac{1}{\lambda^\sigma} \| e^{\beta^1 \lambda} \varphi(0) \| + \frac{1}{\lambda^\sigma} \| \psi - (I + \lambda A_0)^{-1} \psi \| \]
\[= \lambda^{1-\sigma} (1 - e^{-\eta \lambda}) \| (I + \lambda A)^{-1} \psi(0) \| + \frac{1}{\lambda^\sigma} \| \psi - (I + \lambda A_0)^{-1} \psi \|. \]

From Lemma 2 it follows that
\[\lim_{\lambda \to 0} \frac{\| \psi - \varphi \|}{\lambda^\sigma} \leq K \quad \text{for } 0 < \sigma < 1 \]
and
\[\lim_{\lambda \to 0} \frac{\| \psi - \varphi \|}{\lambda} \leq K + |F(\psi)|, \]
and hence $\psi \in D_{A,\sigma}$.

Vice versa, let $\psi \in D_{A,\sigma}$; then
\[\| \psi - (I + \lambda A_0)^{-1} \psi \| \leq \| \psi - (I + \lambda A)^{-1} \psi \| + \| e^{\beta^1 \lambda} \varphi(0) \| \]
and, using again Lemma 2, we have that $\psi \in D_{A_0,\sigma}$.

We have to verify that $D_{A_0,\sigma}$ coincides with the set
\[E_{\sigma} = \{ \varphi \in L^1, \quad -t \int_0^t \| \varphi(t + \theta) - \varphi(\theta) \| \, d\theta + \int_{-t}^0 \| \varphi(\theta) \| \, d\theta < K_{\varphi} t^\sigma \}. \]

The semigroup, $T_0(t)$, generated by A_0 is such that
\[T_0(t) \varphi(\theta) = \begin{cases} \varphi(t + \theta) & \text{a.e.,} \quad t + \theta < 0, \\ 0, & \text{if } t + \theta \geq 0, \end{cases} \]
and so if $0 < t < r$

$$\|T_0(t) \varphi - \varphi\| = \int_{-r}^{0} |T(t) \varphi(\theta) - \varphi(\theta)| d\theta = \int_{-r}^{t} |\varphi(t + \theta) - \varphi(\theta)| d\theta + \int_{t}^{0} |\varphi(\theta)| d\theta;$$

hence $D_{\lambda_0, \sigma} = E_{\sigma}$.

Note that $D_{\lambda_0, \sigma}$ depends on F. It follows that it is not possible to use the Crandall–Pazy theory on nonlinear semigroups to study the non-autonomous version of (FE) in spaces of continuous functions. This is possible in L^1 spaces as, from Proposition 6, it follows that the set $D_{A, \sigma}$ does not depend on F. We will discuss the non-autonomous equation $x(t) = F(t, x_t)$ in another paper.

5. An Example. We show now how the problem

$$(P) \quad Du(t, a) = g(u(t, \cdot))(a), \quad 0 < t < r, \ a > 0,$$

is related to (FE).

Here

$$Du(t, a) = \lim_{h \to 0^+} \frac{u(t + h, a + h) - u(t, a)}{h}, \quad g: L^1(0, r; X) \to L^1(0, r; X),$$

$$f: L^1(0, r; X) \to X \quad \text{and} \quad u_0 \in L^1(0, r; X).$$

If $X = \mathbb{R}^n$ and we take

$$g(\varphi)(a) = -\mu(a, \int_0^\infty \varphi(b) db) \varphi(a) \quad \text{and} \quad f(\varphi) = \int_0^{\infty} \beta(a, \varphi(a), \int_0^\infty \varphi(b) db) da,$$

then problem (P) is the Gurtin–Mac-Camry model of age-dependent population problems (see [4], [11]).

We consider first the case where $g = 0$, and so (P) becomes

$$(P)' \quad Du(t, a) = 0, \quad 0 < t < r, \ a > 0,$$

$$u(t, 0) = f(u(t, \cdot)), \quad 0 < t < r,$$

$$u(0, a) = u_0(a), \quad a > 0.$$

Suppose that

$$(H)' \quad f: L^1(0, r; X) \to X \quad \text{is Lipschitz continuous with constant } |f|.$$

We set $h: L^1(-r, 0; X) \to L^1(0, r; X)$, $(h \varphi)(\theta) = \varphi(-\theta)$ and $F = f \circ h$; clearly, $F: L^1(-r, 0; X) \to X$ is Lipschitz continuous with constant $|F| = |f|$. Hence

$$A \varphi = -\varphi', \quad D_A = \{ \varphi \in W^{1,1}(-r, 0; X), \varphi(0) = (f \circ h) \varphi\},$$
generates a semigroup $T(t)$ in $L^1(-r, 0; X)$ which satisfies Theorem 1. It follows that, setting

$$
(5) \quad u(t, a) = \begin{cases}
 u_0(a-t) & \text{a.e., } t < a, \\
 (hT(t)h^{-1}u_0)(a) & \text{a.e., } t \geq a,
\end{cases}
$$

$u(t, a)$ is the unique solution of $(P)'$; moreover, $u_{|_{1, \alpha}, \Delta} = \{(t, a), 0 < a \leq r, t \geq a\}$, is continuous. In fact, from (3) we have

$$
(6) \quad T(t)(h^{-1}u_0)(-a) = \begin{cases}
 u_0(-t+a) & \text{a.e., } t-a < 0, \\
 T(t-a)(h^{-1}u_0)(0) & \text{a.e., } t-a \geq 0,
\end{cases}
$$

and

$$
(7) \quad T(t)(h^{-1}u_0)(-a) = F(T(t-a)h^{-1}u_0) = f(hT(t-a)h^{-1}u_0), \quad t \geq a.
$$

And so from (5) and (6) we have

$$
(8) \quad u(t+h, a+h) - u(t, a) = 0 \quad \text{a.e., } h > 0
$$

and from (7)

$$
(9) \quad u(t, 0) = (hT(t)h^{-1}u_0)(0) = (T(t)h^{-1}u_0)(0) = f(hT(t)h^{-1}u_0) = f(u(t, \cdot)).
$$

Hence $u(t, a)$ is a solution of $(P)'$.

Vice versa, if $u(t, a)$ is a solution of $(P)'$, then set

$$
(9) \quad x(t) = \begin{cases}
 u_0(-t), & t < 0, \\
 u(t, 0), & t \geq 0,
\end{cases}
$$

$x(t)$ is a solution of (FE). In fact, from (8) and (9) it follows that, if $t \geq 0$, $u(t, \cdot) = hx$, and so $x(t) = u(t, 0) = f(u(t, \cdot)) = F(x)$. If $f(\varphi) = \int_0^r \beta(a, \varphi(b))db da$, then problem $(P)'$ is equivalent to the integral equation

$$
(9) \quad x(t) = \int_0^r \beta(a, x(t-a))db + \int_0^r u_0(b-t)db da + \\
\quad \quad + \int_0^r \beta(a, u_0(a-t))db + \int_0^r x(t-b)db da + \int_0^r u_0(b-t)db da.
$$

Note that $hT(t)h^{-1}$ is the semigroup generated in $L^1(0, r; X)$ by the m-accretive operator $B\varphi = \varphi'$, $D_B = \{\varphi \in W^{1,1}(0, r; X), \ varphi(0) = f(\varphi)\}$. If g is sufficiently smooth, for example if is Lipschitz continuous, then $B - g$ is m-accretive in $L^1(0, r; X)$ and generates a semigroup which gives the solutions of (P).
References

INSTITUTO DI ANALISI E MECCANICA
UNIVERSITÀ DI PADOVA, PADOVA, ITALY

Reçu par la Rédaction le 15.10.1982