DENSE DECOMPOSITIONS OF LOCALLY COMPACT GROUPS

by

WILLIAM E. DIETRICH, JR. (AUSTIN, TEXAS)

A subset E of a topological space X is called non-meager if it cannot be written as a countable union of sets which are nowhere dense in X. E is condensation point dense in X if the intersection of E with every non-empty open set in X is uncountable.

Aiming for a more symmetric decomposition of the reals R than the rationals and irrationals, we ask: can R be decomposed into two condensation point dense sets both of which are non-meager? An affirmative answer is provided by

Theorem 1. Every locally compact Abelian group G which is not totally disconnected has a subgroup H for which

(i) H and its complement meet every neighborhood of G is a non-meager set,

(ii) H and its complement meet every neighborhood of G which is measurable with respect to completed Haar measure in a non-measurable set.

In particular, H decomposes G into two non-measurable, non-meager, condensation point dense subsets of the same cardinality.

Proof. First, we show G has a proper dense subgroup. G is topologically isomorphic with $R^n \times G'$, where G' contains a compact open subgroup ([3], 24.30, p. 389). If $n > 0$ and Q denotes the rationals, $Q^n \times G'$ is a proper dense subgroup of G. If $n = 0$, G contains a compact open subgroup, so that the non-zero component C of 0 in G is a compact connected subgroup. It follows that C is a divisible subgroup of $G([3], 24.25, p. 385)$, and hence $G = C + A$ for some subgroup A whose intersection with C is 0 ([4], Theorem 2, p. 8). It therefore suffices to show C has a proper dense subgroup K, since $K + A$ is then a proper dense subgroup of G.

Let Γ denote the infinite discrete dual of C. Let D denote the proper dense subgroup of the circle T consisting of all n-th roots of unity, $n = 1, 2, \ldots$. For fixed $\gamma_0 \in \Gamma - \{0\}$, set $K = \{x \in C : \gamma_0(x) \in D\}$. K is proper subgroup of C. For since C is connected and $\gamma_0 \neq 0$, $\gamma_0(C) = T$. K is also dense in C. By duality, it suffices to show that for each $x \in C$, $y \in \Gamma$ and $\varepsilon > 0$, there is an $x' \in K$ with $|\gamma(x') - \gamma(x)| < \varepsilon$.
Suppose first that γ_0 and γ are independent elements of Γ. Let S denote the subgroup generated by $\{\gamma_0, \gamma\}$ and define $f : S \to T$ by $f(n\gamma_0 + m\gamma) = \xi^n \gamma(x)^m$, where $\xi \in D$ is fixed. Because γ_0 has infinite order, f is a well-defined character on S (cf. [6], 5.1.3, p. 98). Because Γ is discrete, f extends to some $\hat{a}' \in \hat{I}$, $x' \in C$. Since $\gamma_0(x') = \hat{a}'(\gamma_0) = f(\gamma_0) = \xi \in D$, $x' \in K$. But also $|\gamma(x') - \gamma(x)| = |f(\gamma) - \gamma(x)| = 0 < \epsilon$.

On the other hand, suppose γ and γ_0 satisfy a relation $n\gamma_0 + m\gamma = 0$, where $n\gamma_0$, $m\gamma \neq 0$. Since D is dense in $T = \gamma_0(C)$, there is a sequence $\{x_k\}$ on K with $\gamma_0(x_k) \to \gamma_0(x)$. Observe that $\gamma(x_k)^m = \gamma_0(x_k)^n \gamma_0(x)^n = \gamma(x)^m$. By taking a subsequence, we may assume $\{\gamma(x_k)\}$ converges to some $a \in T$. $[\gamma_0(x)]^m = \lim_k \gamma(x_k)^m \gamma(x)^m = 1$, so that $\gamma(x) = a\beta$, where β is an m-th root of unity. Since $m_\gamma \neq 0$, we have $\gamma(C) = T$ and $\gamma(y) = \beta$ for some $y \in C$. Notice $\gamma_0(y)^n = \gamma(y)^m = \beta^m = 1$, so actually $y \in K$. Thus $x_k + y \in K$ and $\gamma(x_k + y) = \gamma(x_k) \beta \to a\beta = \gamma(x)$ as required.

Let L denote a proper dense subgroup of G and A a non-zero countable subgroup of G/L. Embed A in a countable divisible group Ω, and extend this embedding to a group homomorphism $\vartheta : G/L \to \Omega$ ([6], 2.5.1, p. 44). Let $H = p^{-1} (\ker \vartheta)$, where $p : G \to G/L$ is projection. H is a subgroup of G containing L, and since

$$G/H \approx \frac{G/L}{H/L} = \frac{G/L}{\ker \vartheta} \approx \vartheta(G/L) \subset \Omega,$$

H has countable index in G. H is proper since $A \neq 0$ implies $\ker \vartheta \neq G/L$.

(i) Let $U = x_0 + V$ be a neighborhood in G, with V a neighborhood of 0. Let $W \subset V$ be a symmetric open neighborhood of 0. Since $x_0 + H$ is dense in G, we may choose a $y_0 \in W \cap x_0 + H$. $x_0 = y_0 + h$ ($h \in H$) and a computation shows that $U \cap H = h + [H \cap y_0 + V]$. Since $-y_0 \in -W = W \subset \text{int } V$, $y_0 + V$ is a neighborhood of 0. Therefore to show $U \cap H$ is non-meager, we may assume U is a neighborhood of 0.

Choose an open neighborhood V of 0 for which $V - V \subset U$. $G = E + H$, where E is a countable set. For each $y \in E$ choose a $y \in V \cap x + H$, and let F denote the countable set so obtained. For $y \in F$, $h \in H$ and $y + h \in V$, $h \in V - y \subset V - V \subset U$. This means $V = V \cap [E + H] = V \cap [F + H] = \bigcup \{V \cap y + H : y \in F\} \subset \bigcup \{y + U \cap H : y \in F\}$. If $U \cap H$ is a meager in G, with $U \cap H$ the countable union of nowhere dense sets E_i, $i \in \Omega$, then the open set $V \subset \bigcup \{y + E_i : y \in F, i \in \Omega\}$ is meager in G. But this is impossible, since G is a Baire space ([2], p. 249).

The complement H^c is dense in G, since if $b \in H^c$, then $b + H \subset H^c$. Choosing $a \in V \cap H^c$, we have $a + V \cap H \subset U \cap a + H \subset U \cap H^c$, so that $U \cap H^c$ is also category II in G by the above.

(ii) Let L denote the completion of the σ-algebra generated by the open sets in G with respect to Haar measure m. Let U be a neighborhood
in G with $U \in \mathcal{L}$. Since $U \cap H = U \cap (U \cap H^c)^c$, it suffices to show $U \cap H \not\in \mathcal{L}$. Since \mathcal{L} is translation invariant, we may assume, exactly as above, that U is a neighborhood of 0. If V is an open neighborhood of 0 with $V - V \subseteq U$, and $D = \{y_n\} \subseteq V$ is chosen countable, so that $G = D + H$, then V is contained in the union $\bigcup_n y_n + U \cap H$. If $U \cap H \in \mathcal{L}$, then $m(U \cap H) > 0$, since

$$0 < m(V) \leq \sum_n m(y_n + U \cap H) = \sum_n m(U \cap H).$$

But this means $U \cap H + U \cap H \subseteq H$ has non-empty interior ([1], Theorem 1, p. 648), so that H^c is not dense. Contradiction.

Finally, H and H^c are condensation points dense since every non-meager set in G is uncountable. They have the same cardinality because H has countable index in G: for $a \in H^c$, card $H^c \leq$ card $G = \text{card } G/H$ card $H \leq \aleph_0$ card $H =$ card $H = \text{card } a + H \leq \text{card } H^c$.

Since every non-meager subset of G is non-meager in any containing subspace, we observe

Corollary 1. H and its complement are Baire spaces.

Corollary 2. Every non-empty open set in such a group is the disjoint union of two non-measurable sets.

Theorem 1 is not generic to groups which are not 0-dimensional, but it may characterize those which are non-discrete. For we have

Theorem 2. The conclusion of Theorem 1 holds if G is a non-discrete LCA group which is either: (i) separable, (ii) compact, (iii) torsion free and divisible or (iv) compactly generated.

Proof. As the proof of Theorem 1 reveals, it suffices in each case to construct a proper dense subgroup of G. We may assume G is 0-dimensional. If G is separable, the group generated by a countable dense set is proper since G is uncountable ([3] 4.26, p. 31). If G is compact, its dual \hat{G} is a discrete torsion group, and hence the direct sum of its p-primary components \hat{G}_p, p prime ([4], p. 5). Thus $G \approx \bigoplus_p \hat{G}_p$. If \hat{G}_p is non-zero for infinitely many p, $\bigoplus_p \hat{G}_p$ is a proper dense subgroup of G. If only finitely many \hat{G}_p's are non-zero, at least one \hat{G}_{p_0} is infinite, since G is non-discrete. Refer now to ([3], 25.22, p. 412). \hat{G}_{p_0} contains a subgroup B isomorphic to a direct sum $\bigoplus_{i \in I} Z/p^{n_i}Z$ whose annihilator, Ann B, is a compact, pure subgroup of \hat{G}_{p_0}. Ann B is an algebraic direct summand of \hat{G}_{p_0} ([3], 25.21, p. 410), so that $\hat{G}_{p_0} = H + \text{Ann } B$ for a subgroup H whose intersection with Ann B is 0. If Ann $B \neq 0$, Ann B is topologically isomorphic with A_α, the direct product of the p-adic integers with itself $\alpha \neq 0$ number of times. Since A_α is monothetic and non-discrete ([3], 10.6, p. 111), it has a proper dense subgroup. It follows that \hat{G}_{p_0} has a proper dense sub-

group. If $\operatorname{Ann} B = 0$, $\Gamma_{p_0} = B \approx \bigoplus_i \mathbb{Z}/p^{n_i} \mathbb{Z}$, so that $\hat{\Gamma}_{p_0} \approx \prod_{i \in I} \mathbb{Z}/p^{n_i} \mathbb{Z}$. I is infinite because Γ_{p_0} is, and $\bigoplus_i \mathbb{Z}/p^{n_i} \mathbb{Z}$ provides a proper dense subgroup of $\hat{\Gamma}_{p_0}$. In either case, then, $G \approx \prod_{p \neq p_0} \hat{\Gamma}_p \times \hat{\Gamma}_{p_0}$ has a proper dense subgroup.

If G is generated by a compact neighborhood V of 0, then G contains a closed subgroup H such that $H \cap V = 0$ and G/H is compact ([6], 2.4.2, p. 41). Choose a neighborhood U of 0 such that $U - U \subset V$. Since G is non-discrete and the quotient map $p : G \rightarrow G/H$ injects U into G/H, G/H is a non-discrete compact group. By the above, it has a proper dense subgroup K. Plainly, $p^{-1}(K)$ is a proper dense subgroup of G.

If G is torsion-free, divisible and 0-dimensional, G is topologically isomorphic to the product of a direct sum of copies of the rationals and a group E which is the minimal divisible extension of a group of the form $\prod_p \mathbb{A}_p^{\alpha_p}$, p prime, α_p a cardinal number (cf. [3], 25.33, p. 421]). If Ω_p denotes the p-adic number field and $\Omega_p^{\alpha_p'}$ denotes the minimal divisible extension of $\Omega_p^{\alpha_p}$, then E is the local direct product of the groups $\Omega_p^{\alpha_p'}$ relatively to the compact open subgroups $\mathbb{A}_p^{\alpha_p}$; that is, $E = \prod_p \Omega_p^{\alpha_p'}$ for all but finitely many p ([3], 25.32 (d), p. 420). If the number of non-zero α_p's is infinite, $\bigoplus_p \Omega_p^{\alpha_p'}$ is a proper dense subgroup of E. If not, $E = \prod_p \Omega_p^{\alpha_p'}$, and E will have a proper dense subgroup if some $\Omega_p^{\alpha_p'}$ does, $\alpha_p' \neq 0$. This follows essentially because $\Omega_p^{\alpha_p'} = \bigcup_{k=-\infty}^{\infty} \mathbb{A}_p^{\alpha_p}$ ([3], 25.32 (c), p. 420), where the \mathbb{A}_k are defined as in ([3], 10.4, p. 110), because each \mathbb{A}_k is monothetic and compact ([3], p. 111) and because $\mathbb{A}_k \subset \mathbb{A}_m$ if $k \geq m$. In either case, it follows that G has a proper dense subgroup.

Other results are possible. For example, Theorem 1 holds if G is a torsion group one of whose p-primary components G_p contains a proper dense subgroup. For the structure theorem ([5], 3.21, p. 494) implies that G is topologically isomorphic to $\{x_p\} \prod_p G_p : x_p \in K_p$ for all but finitely many p), where $\{K_p \subset G_p\}$ is a family of open subgroups. In particular, if H_{p_0} is a proper dense subgroup of some $G_{p_0} \bigoplus G_p \bigoplus H_{p_0}$ is a proper dense subgroup of G. Theorem 1 also holds if G contains a precompact divisible subgroup H. For a computation shows that \bar{H} is divisible, and hence a compact, infinite algebraic direct summand of G ([4], p. 8). Since Theorem 2 implies \bar{H} has a proper dense subgroup, G does also. Again Theorem 1 holds if $H = \{x \epsilon G : nx \rightarrow 0\}$ is infinite and precompact. For if G is 0-dimensional, H is a closed, pure subgroup of G; hence an infinite compact direct summand ([3], p. 410). We are lead to conjecture that Theorem 1 holds for all non-discrete LCA groups. Of course in view of
the argument in Theorem 1, the problem is whether every non-discrete LCA group has a proper dense subgroup (P 764). Finishing off the remaining 0-dimensional cases will undoubtedly involve a structure theory for non-compact 0-dimensional groups.

REFERENCES

THE UNIVERSITY OF TEXAS AT AUSTIN
DEPARTMENT OF MATHEMATICS

Reçu par la Rédaction le 5.10.1970