SYMMETRIC OPERATIONS IN GROUPS

BY

ERNEST PŁONKA (WROCŁAW)

Introduction. We say that an operation f on A (i.e., a function $f: A^n \to A$) is generated by a set F of operations on A, if f is a composition of some operations belonging to F and some trivial operations (= identity operations).

Let G be a group. We denote by $A^{(n)}(G)$ the set of all operations on the set G which are generated by the operations xy and x^{-1}, or, in other words, the set of all n-ary algebraic operations in G (see [1]), or else, the set of all words of n variables x_1, \ldots, x_n. The set $A^{(n)}(G)$ forms a group, the multiplication being defined by juxtaposition. In this group we distinguish the subgroup of all symmetric operations $S^{(n)}(G)$, that is the set of all words $s(x_1, \ldots, x_n)$ for which the equation

$$s(x_1, x_2, \ldots, x_n) = s(x_{o_1}, x_{o_2}, \ldots, x_{o_n})$$

holds for every $x_1, x_2, \ldots, x_n \in G$ and for all permutations $o \in S_n$.

The purpose of this paper is to study symmetric operations and the possibility of generating the group operation xy by symmetric operations of many (in general) variables. The class of groups in which this turns out to be possible we denote by \mathcal{X}.

In section I we give a complete description of $S^{(n)}(G)$ for nilpotent groups of class 2 and for arbitrary n, and, in section II, for normal products of Z_p and Z_2 for $n = 2$.

In section III we investigate the class \mathcal{X}. It is clear that abelian groups belong to \mathcal{X}, and E. Marczewski (cf. [2]) raised a question whether these are the only groups in \mathcal{X}. Unexpectedly enough, it turns out (see section IV) that \mathcal{X} contains the symmetric group on three letters S_3. This leaves an open question of giving a more accurate description of the class \mathcal{X} (P 684).

I. Nilpotent groups of class 2. Now we are going to determine the symmetric operations in the nilpotent groups of class 2. Let us recall the well-known identity

$$[x^n, y] = [x, y^n] = [x, y]^n.$$
THEOREM 1. If G is a nilpotent group of class 2, then operation $f \in A^{(n)}(G)$ is symmetric if and only if

$$f(x_1, x_2, \ldots, x_n) = x_1^a x_2^a \cdots x_n^a \prod_{1 \leq j < i \leq n} [x_i, x_j]^b,$$

where a, b are integers and

$$a^2 \equiv 2b(\exp G').$$

Proof. Every word f in G is of the form

$$f(x_1, x_2, \ldots, x_n) = x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n} \prod_{1 \leq j < i \leq n} [x_i, x_j]^{b_{ij}}$$

and the condition $f(x_1, x_2, \ldots, x_n) = f(x_2, x_3, x_4, \ldots, x_n)$ together with (1) yields

$$x_1^{a_1} \cdots x_n^{a_n} \prod_{1 \leq j < i \leq n} [x_i, x_j]^{b_{ij}}$$

$$= x_2^{a_1} x_2^{a_2} x_3^{a_3} \cdots x_n^{a_n} \prod_{3 \leq j < i \leq n} [x_i, x_j]^{b_{ij}} \prod_{3 \leq i < n} [x_i, x_1]^{b_{i1}} \prod_{3 \leq i < n} [x_i, x_2]^{b_{i2}} [x_1, x_2]^{b_{21}}$$

$$= x_1^{a_2} x_2^{a_1} x_3^{a_3} \cdots x_n^{a_n} \prod_{3 \leq i < n} [x_i, x_1]^{b_{i2}} \prod_{3 \leq i < n} [x_i, x_1]^{b_{i1}} \prod_{3 \leq j < i \leq n} [x_i, x_j]^{b_{ij}} [x_2, x_1]^{a_i a_2 - b_{21}}.$$

Hence we have

$$a_1 \equiv a_2(\exp G'),$$

$$a_1, a_2 \equiv 2b_{21}(\exp G'),$$

$$b_{i1} \equiv b_{i2}(\exp G'), \quad i = 3, 4, \ldots, n.$$

From the condition $f(x_1, \ldots, x_n) = f(x_2, x_3, \ldots, x_n, x_1)$ we infer by (1) that

$$x_1^{a_1} \cdots x_n^{a_n} \prod_{1 \leq j < i \leq n} [x_i, x_j]^{b_{ij}}$$

$$= x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n-1} x_1^{a_1} \prod_{1 \leq j < i \leq n} [x_i+1, x_j+1]^{b_{ij}} \prod_{1 \leq j < n} [x_1, x_j+1]^{b_{nj}}$$

$$= x_1^{a_1} x_2^{a_1} \cdots x_n^{a_1} \prod_{2 \leq i < n} [x_i, x_1]^{a_i-1} \prod_{1 \leq j < n} [x_i+1, x_j+1]^{b_{ij}} \prod_{1 \leq j < n} [x_j+1, x_1]^{b_{nj}}.$$

This yields

$$a_1 \equiv a_2 \equiv \cdots \equiv a_n(\exp G'),$$

$$b_{ij} \equiv b_{i+1,j+1}(\exp G') \quad \text{for } 1 \leq j < i < n,$$

$$b_{i1} + b_{n,i-1} \equiv a_{i-1} a_n(\exp G') \quad \text{for } 2 \leq i \leq n.$$
Now we shall prove the theorem by induction on \(n \). For \(n = 1, 2, 3 \) our statement readily follows from (4), (5) and (6). Suppose that (4)-(9) imply (2) and (3) for \(n - 1 \) \((n \geq 4) \). This means that
\[
 a_i \equiv a(\exp G) \quad \text{for } 1 \leq i \leq n - 1,
 b_{ij} \equiv b(\exp G') \quad \text{for } 1 \leq j < i \leq n - 1,
 a^2 \equiv 2b(\exp G').
\]
In view of (7) we have \(a_n \equiv a(\exp G) \), while for \(k \) such that \(1 < k < n \) the relation \(b_{ni} \equiv b_{n-1,i-1}(\exp G') \) follows from (8). Now using (6) for \(i = n \) as well as the induction hypothesis, we conclude that every \(n \)-ary symmetric operation must be of the form (2), and (3) holds.

If \(a_i \equiv a(\exp G), b_{ij} \equiv b(\exp G') \) for \(1 \leq i < j \leq n \) and (3) is satisfied, then (4)-(9) are satisfied too. And since the cycles \((1, 2) \) and \((1, 2, \ldots, n) \) generate the symmetric group \(S_n \), \(f \) is symmetric. Thus the proof is completed.

II. Normal products \(Z_pZ_2 \). Let us consider the normal product \(Z_pZ_2 \) of a cyclic group \(Z_p \) (for a prime \(p > 2 \)) and the group \(Z_2 \), i.e. the group of pairs \((\varepsilon, k)\), where \(\varepsilon = +1 \) or \(-1, k \in Z_p \), and the multiplication being defined by the equality
\[
(\varepsilon, k)(\eta, l) = (\varepsilon\eta, \eta k + l).
\]
For the sake of brevity we write \(k \) instead of \((1, k)\) and \(kb \) instead of \((-1, k), k \in Z_p \).

Let us begin with the two simple facts:

(i) The commutator subgroup of \(Z_pZ_2 \) is \(Z_p \).

(ii) For every \(0 \leq i < p \) and \(0 \leq j < p \) there exists precisely one automorphism \(\varphi \) of \(Z_pZ_2 \) for which \(\varphi(1) = i \) and \(\varphi(0b) = jb \).

To verify (ii) define
\[
\varphi(kb) = (j + ki)b, \quad \varphi(k) = ki \quad \text{for } 0 \leq k < p,
\]
and check that \(\varphi \) is an automorphism of \(Z_pZ_2 \).

Now we prove the following useful

Lemma. Let \(w, w' \in A^2(Z_pZ_2) \). If \(w, w' \) are equal on the pairs \(\langle 1, 0 \rangle, \langle 0, 1 \rangle, \langle 0b, 1 \rangle, \langle 0b, 1b \rangle, \langle 1b, 0b \rangle \), then \(w, w' \) are identical everywhere in \(Z_pZ_2 \).

Proof. Let
\[
w = x^{a_1}y^{b_1} \ldots x^{a_n}y^{b_n}, \quad w' = x'^{a_1}y^{b_1} \ldots x'^{m}y^{b_m}.
\]
If \(w(1, 0) = w'(1, 0) \) and \(w(0, 1) = w'(0, 1) \), then
\[
\sum a_i = \sum c_{i}(p), \quad \sum b_i = \sum d_{i}(p),
\]
and therefore for every \(k, l \) with \(0 \leq k, \ l < p \) we have
\[
\omega(k, l) = k^{x_1} l^{x_2} = \omega'(k, l)(p).
\]

Since \(\omega \) and \(\omega' \) must commute with each automorphism \(\varphi \) of \(\mathbb{Z}_p \mathbb{Z}_2 \), therefore if
\[
\varphi(1) = k, \quad \varphi(0b) = k' b,
\]
then we have
\[
\omega(k, k' b) = \omega'(k, k' b) \quad \text{and} \quad \omega(k' b, k) = \omega'(k' b, k)
\]
for all \(k, k' \) such that \(0 < k < p, 0 \leq k' < p \).

If \(0 \leq k' < k < p \), then the mapping \(\varphi \) defined by
\[
\varphi(1) = k' - k, \quad \varphi(0b) = kb
\]
is, by (ii), an automorphism of \(\mathbb{Z}_p \mathbb{Z}_2 \), and
\[
\varphi(1b) = (k + k' - k)b = k'b.
\]

Hence
\[
\omega(kb, k' b) = \omega'(kb, k' b) \quad \text{and} \quad \omega(k' b, kb) = \omega'(k' b, kb)
\]
for any \(k, k' \) with \(0 \leq k < k' < p \).

Further, the mapping
\[
(11) \quad e: \mathbb{Z}_p \mathbb{Z}_2 \to \mathbb{Z}_p \mathbb{Z}_2,
\]
where \(e(k) = 0 \), and \(e(kb) = 0b \) for \(0 \leq k < p \), is an endomorphism of \(\mathbb{Z}_p \mathbb{Z}_2 \), and thus
\[
\begin{align*}
\omega(1, 0b) &= \omega(0, 0b) = \omega'(0, 0b) = \omega'(1, 0b), \\
\omega(0b, 1) &= \omega(0b, 0) = \omega'(0b, 0) = \omega'(0b, 1).
\end{align*}
\]

Hence
\[
\omega(0, kb) = \omega'(0, kb) \quad \text{and} \quad \omega(kb, 0) = \omega'(kb, 0)
\]
because \(kb (1 \leq k < p) \) is an image of \(0b \) by an automorphism. Finally, we have
\[
\omega(kb, kb) = \omega(kb, 0)\omega(0, kb) = \omega'(kb, 0)\omega'(0, kb) = \omega'(kb, kb)
\]
for all \(k (0 \leq k < p) \).

The following theorem gives a description of the symmetric binary words in \(\mathbb{Z}_p \mathbb{Z}_2 \).

Theorem 2. We have
\[
S^{(2)}(\mathbb{Z}_p \mathbb{Z}_2) = \text{gp}\{w_p, u\} \cong \mathbb{Z}_p \times \mathbb{Z}_p \mathbb{Z}_2,
\]
where
\[
(12) \quad w_p(x, y) = xy[y, x]^{(p+1)/2}, \quad u(x, y) = x^2 y^2.
\]
Proof. Since
\[w_p(y, x) = yx[x, y]^{(p+1)/2} = xy[y, x]^{-(p+1)/2+1} = xy[y, x]^{(p+1)/2} = w_p(x, y), \]
\[u(y, x) = y^2x^2 = x^2y^2 = u(x, y), \]
we get the inclusion
\[\text{gp}\{w_p, u\} \subseteq S^{(2)}(Z_p Z_2). \]

Now we show that if \(s \in S^{(2)}(Z_p Z_2) \), then
\[s(0b, 1b) = 0. \]
(13)
If \(s(x, y) = x^{a_1}y^{b_1} \cdots x^{a_n}y^{b_n} \), then from \(s(0, 0b) = s(0b, 0) \) we obtain
\[\sum a_i \equiv \sum b_i(2). \]

Consequently,
\[s(0b, 0b) = 0^{\Sigma a_i}0b^{\Sigma b_i} = 0b^{\Sigma a_i+\Sigma b_i} = 0. \]
(14)
Because \(s \) commutes with the endomorphism \(e \) defined in (11), the equality (14) implies
\[0 = s(0b, 0b) = s(e(0b), e(1b)) = es(0b, 1b), \]
and thus \(s(0b, 1b) \in Z_p \).

Let us suppose that \(s(0b, 1b) = k \), and consider an automorphism \(\varphi(1) = -1, \varphi(0b) = 1b. \) Hence we get
\[\varphi(1b) = \varphi(0b \cdot 1) = \varphi(0b) \cdot \varphi(1) = 1b \cdot (-1) = 0b \]
and, furthermore,
\[k = s(0b, 1b) = s(1b, 0b) = s(\varphi(0b), \varphi(1b)) = \varphi(k). \]

One can see that the only \(k \in Z_p \) for which the equality \(\varphi(k) = k \) holds is equal to 0. Therefore \(s(0b, 1b) = 0. \)

Let us consider the mapping \(\alpha: S^{(2)}(Z_p Z_2) \to Z_p \times Z_p Z_2 \) defined by
\[\alpha(s) = \langle s(1, 0), s(1, 0b) \rangle. \]
Since
\[\alpha(s_1s_2) = \langle s_1s_2(1, 0), s_1s_2(1, 0b) \rangle \]
\[= \langle s_1(1, 0), s_1(1, 0b) \rangle \langle s_2(1, 0), s_2(1, 0b) \rangle = \alpha(s_1)\alpha(s_2), \]
\(\alpha \) is a homomorphism. Moreover, since \(s(0b, 1b) = 0 \) for all \(s \in S^{(2)} \), therefore, if \(s_1 \neq s_2 \), then, by the lemma, either \(s_1(1, 0) \neq s_2(1, 0) \) or \(s_1(1, 0b) \neq s_2(1, 0b) \). This means that the mapping \(\alpha \) is one-to-one. Observe now that
\[\alpha(w_p) = \langle 1, 0b \rangle \text{ and } \alpha(u) = \langle 2, 2 \rangle \]
are the generators of \(Z_p \times Z_p Z_2 \), and therefore

\[
gp \{ w_p, u \} = S^{(2)}(Z_p Z_2) \cong Z_p \times Z_p Z_2.
\]

This completes the proof.

III. The class \(\mathcal{X} \).

Theorem 3. The class \(\mathcal{X} \) is closed under taking subgroups, homomorphism images, and direct powers.

Proof. Observe that if \(s \) is a symmetric operation in \(G \), then \(s \) is symmetric in any group of the variety of groups, i.e. in the \(HSP(G) \) generated by \(G \). If \(G \in \mathcal{X} \), then the operation \(xy \) is generated by symmetric operations, and the equation expressing this fact is satisfied in any group of \(HSP(G) \).

Theorem 4. If a nilpotent group \(G \) belongs to \(\mathcal{X} \), then \(G \) is abelian.

Proof. In view of Theorem 3 it is sufficient to prove Theorem 4 for nilpotent group of class 2. To do this we show\(^{(1)}\) that if \(s \in S^{(n)}(G) \), then

\[
s(x_1^{-1}, \ldots, x_n^{-1}) = s(x_1, \ldots, x_n)^{-1}.
\]

By theorem 1,

\[
s(x_1, \ldots, x_n) = x_1^a \cdots x_n^a \prod_{1 \leq j < i \leq n} [x_i, x_j]^b, \quad \text{where } a^2 \equiv 2b(\exp G'),
\]

whence

\[
s^{-1}(x_1, \ldots, x_n) = \prod_{1 \leq j < i \leq n} [x_i, x_j]^{-b} \cdot x_n^{-a} \cdots x_1^{-a} \]

\[= x_1^{-a} \cdots x_n^{-a} \prod_{1 \leq j < i \leq n} [x_i^{-a}, x_j^{-a}] \prod_{1 \leq j < i \leq n} [x_i, x_j]^{-b}.
\]

Hence, by (16), we get (15).

If algebraic operations \(s_1, \ldots, s_k \) satisfy (15), then so does the operation \(s_1(s_2, \ldots, s_k) \). Hence, since \(G \in \mathcal{X} \), we have \(x^{-1}y^{-1} = (xy)^{-1} \), which implies that \(G \) is abelian.

Theorems 3 and 4 produce an abundance of groups which are not in \(\mathcal{X} \). For example, we have the following

Corollary. If a finite group \(G \) has a non-abelian Šylow subgroup, then \(G \) is not in \(\mathcal{X} \). Consequently, \(S_n \notin \mathcal{X} \) for \(n \geq 4 \).

IV. A non-abelian group in \(\mathcal{X} \). In this section we show that \(S_3 \in \mathcal{X} \).

Theorem 5. In \(Z_2 Z_2 \) we have

\[
xy = w_3[w_3u(w_3u(x, y), y^4), w_3(w_3^4(x, y), s(x, y, x))],
\]

\(^{(1)}\) The idea of this proof is due to S. Fajtlowicz.
where \(w_3(x, y) = xy[x, y], u(x, y) = x^2y^2, \) and \(s(x, y, z) = [x, y, x] \times [x, y, z] \) is a ternary symmetric operation in \(Z_2Z_2 \). Consequently, \(Z_2Z_2 \in \mathcal{X} \).

Proof. First we check that \(s \) is symmetric. In fact, by virtue of Jacobi identity valid in meta-abelian groups, we have

\[
\begin{align*}
 s(y, x, z) &= [x, y, z][y, x, z] = [x, y, z]^2[y, z, x]^2 = s(x, y, z), \\
 s(y, z, x) &= [x, y, z][y, z, x] = [y, z, x][y, x, z]^2 = s(x, y, z).
\end{align*}
\]

To prove (17) we apply lemma and verify that:

\[
\begin{align*}
 R(0, 1) &= w_3(w_3u(0, 1), w_3(1, 0)) = w_3(0, 1) = L(0, 1), \\
 R(1, 0) &= w_3(w_3u(0, 0), w_3(1, 0)) = w_3(0, 1) = L(1, 0), \\
 R(1, 0b) &= w_3(w_3u(2b, 0), w_3(0, 0)) = w_3(2b, 0) = 2b = L(1, 0b), \\
 R(0b, 1) &= w_3(w_3u(2b, 1), w_3(0, 1)) = w_3(1b, 1) = 1b = L(0b, 1), \\
 R(0b, 1b) &= w_3(w_3u(0, 0), w_3(0, 1)) = w_3(0, 1) = L(0b, 1b), \\
 R(1b, 0b) &= w_3(w_3u(0, 0), w_3(0, 2)) = w_3(0, 2) = L(1b, 0b).
\end{align*}
\]

This completes the proof.

It is of interest that in \(S_3 \) the operation \(xy \) is not generated by the set of binary symmetric operations. More precisely, we prove

Theorem 6. Every algebraic binary operation \(f \) from the algebra

\[
\mathfrak{A} = \langle Z_2Z_2; S^{(1)} \cup S^{(2)} \rangle
\]

satisfies

\[
(18) \quad f(ib, jb) \epsilon \{0, 0b, 1b, \ldots, (p-1)b\} = B, \quad 0 \leq i, j < p.
\]

Consequently, the operation \(xy \) does not belong to \(A^{(2)}(\mathfrak{A}) \).

Proof. Since every element of \(B \) is of order \(\leq 2 \), every unary operation maps \(B \) into \(B \). If \(f \epsilon S^{(2)}(Z_2Z_2) \), then, by Theorem 2, the operation \(f \) is of the form \(w_3^ku^l \) with \(0 \leq k < 2p, 0 \leq l < p \). We have

\[
\begin{align*}
 w_3^k(ib, jb) &= ib \cdot jb \cdot [jb, ib]^{(p+1)/2} = (j-i)[(i-j)(i-j)]^{(p+1)/2} = 0, \\
 u^l(ib, jb) &= 0.
\end{align*}
\]

Suppose now that \(f_1 \) and \(f_2 \) satisfy (18) and consider the superpositions \(w_3(f_1, f_2) \) and \(u(f_1, f_2) \). We see that

\[
\begin{align*}
 w_3^k(f_1(ib, jb), f_2(ib, jb)) \epsilon B, \\
 u(f_1(ib, jb), f_2(ib, jb)) = 0,
\end{align*}
\]

whence

\[
\begin{align*}
 w_3^k u^l(f_1(ib, jb), f_2(ib, jb)) \epsilon B,
\end{align*}
\]

and (18) follows.
Since $ib \cdot jb = j - i$, the operation xy cannot be an algebraic operation in \mathbb{A}.

I wish to express my gratitude to Andrzej Hulanicki for his help in preparation of this paper.

The results of this paper were announced in [3].

REFERENCES

INSTITUTE OF MATHEMATICS OF THE WROCŁAW UNIVERSITY

Reçu par la Rédaction le 23. 4. 1969