CHARACTERIZATION OF IRREDUCIBLE ALGEBRAIC INTEGERS
BY THEIR NORMS

BY

G. LETTL (GRAZ)

1. Preliminaries and main result. Let \(K \) be an algebraic number field and \(L \) a finite extension of it. We shall denote by \(\mathcal{O}_K \) the ring of integers of \(K \), \(E_K \) the group of units (i.e., invertible elements of \(\mathcal{O}_K \)), \(\mathfrak{c}_K \) the ideal class group of \(K \), written additively, and \(h_K \) its order.

It is well known that \(h_K \) is finite and that \(h_K \) is in a certain sense a measure indicating how far \(\mathcal{O}_K \) is remote from being a unique factorization domain. \(\mathcal{O}_K \) is a unique factorization domain iff \(h_K = 1 \) and \(\mathcal{O}_K \) is a half-factorial domain iff \(h_K \leq 2 \) (see [3]).

Two integers \(\alpha, \beta \in \mathcal{O}_K \setminus \{0\} \) are called associated (\(\alpha \sim \beta \)) if \(\alpha \beta^{-1} \in E_K \). An integer \(\alpha \in \mathcal{O}_K \setminus (E_K \cup \{0\}) \) is called irreducible if the only integers dividing \(\alpha \) are units or integers associated with \(\alpha \). If \(L/K \) is normal, denote its Galois group by \(G \) and the relative norm for \(L/K \) of \(\alpha \in L \) by \(N\alpha \in K \).

DEFINITION 1. The extension \(L/K \) has property \((N^*)\) if the following holds:

For any \(\alpha, \beta \in \mathcal{O}_L \) with \(N\alpha \sim N\beta \) in \(K \), \(\alpha \) and \(\beta \) are either both irreducible or both not.

If \(L/K \) is normal and \(h_L = 1 \), it is easy to check that \((N^*)\) holds. If \(L/K \) is not normal, property \((N^*)\) does not hold. We will characterize all finite normal extensions of algebraic number fields with property \((N^*)\). It will be shown that for an extension \(L/K \) property \((N^*)\) depends only on the \(G \)-module structure of the ideal class group \(\mathfrak{c}_L \). For \(n \in \mathbb{N} \) set \(C_n = \mathbb{Z}/n\mathbb{Z} \), the cyclic group of order \(n \).

The main result is given by

THEOREM 1. A normal extension \(L/K \) with Galois group \(G \) has property \((N^*)\) iff one of the following conditions holds:
(a) \(\mathfrak{c}_L \simeq C_2 \oplus C_2 \);
(b) \(G \) acts trivially on \(\mathfrak{c}_L \);
(c) \(h_L \) is odd and there exists an algebraic number field \(L_0 \) with \(K \subseteq L_0 \subseteq L \) and \([L_0 : K] = 2\)
such that the Galois group G_0 of L/L_0 acts trivially on \mathcal{O}_L and any $\sigma \in G \setminus G_0$ acts on \mathcal{O}_L via $\sigma a = -a$.

From Theorem 1 we immediately obtain

Corollary 1. If L/K is normal and $([L: K], 6) = 1$, then L/K has property (N*) iff G acts trivially on \mathcal{O}_L.

If $K = \mathbb{Q}$ and L is a quadratic number field, (a) in Theorem 1 implies (b), (b) reduces to

$$\mathcal{O}_L \cong \bigoplus_{i=1}^{k} C_2 \quad \text{with } k \in N,$$

and (c) reduces to "h_L is odd", so we obtain the result mentioned in [2], pp. 17–18.

Bumby and Dade [2] and Bumby [1] considered a similar problem asking when L/K has property (N), which means: if α and β are integers of L with the same relative norms, then either both are irreducible or both are not. All quadratic number fields with property (N) are characterized in [2], whereas in [1] necessary conditions are given under which property (N) holds for general L/K. Of course, property (N*) implies (N).

In the next section we will show how property (N*) depends on the G-module structure of \mathcal{O}_L.

2. Translation into a problem of G-modules. Let G be a multiplicative group and A a G-module. A non-empty finite family $(a_i)_{i \in I}$ in A is called a **block** if

$$\sum_{i \in I} a_i = 0.$$

A block is called **irreducible** if none of its proper subfamilies is a block.

Definition 2. Let G be a multiplicative group and A a G-module. We say that (G, A) has property (N*) if for every irreducible block $(a_i)_{i \in I}$ in A and every family $(\sigma_i)_{i \in I}$ in G the following holds: if $(\sigma_i a_i)_{i \in I}$ is a block, then it is irreducible.

The usefulness of Definition 2 will become clear by the next proposition.

Proposition 1. If L/K is normal with Galois group G, then it has property (N*) iff (G, \mathcal{O}_L) has property (N*).

The main idea leading to the translation of factorization problems into \mathcal{O}_L is the following: For $\alpha \in \mathcal{O}_L$ let

$$\alpha \cdot \mathcal{O}_L = \prod_{i=1}^{r} p_i$$

be the unique factorization of the principal ideal $\alpha \cdot \mathcal{O}_L$ into prime ideals. Denote the ideal class containing p_i by $[p_i]$. Then α is an irreducible integer.
iff the block

$$([p_1], [p_2], \ldots, [p_r])$$

is irreducible.

Proof of Proposition 1. Assume that (G, \mathcal{O}_L) has property (N^*). Let $\alpha \in \mathcal{O}_L$ be irreducible and

$$\alpha \cdot \mathcal{O}_L = \prod_{i \in I} p_i$$

be the factorization into prime ideals; then $([p_i])_{i \in I}$ is an irreducible block in \mathcal{O}_L. If $\beta \in \mathcal{O}_L$ with $N\alpha \sim N\beta$, then the prime ideal decomposition of $\beta \cdot \mathcal{O}_L$ is of the form

$$\beta \cdot \mathcal{O}_L = \prod_{i \in I} p_i^{\sigma_i} \quad \text{with } \sigma_i \in G.$$

Property (N^*) of (G, \mathcal{O}_L) ensures that the block $(\sigma_i [p_i])_{i \in I}$ is irreducible, thus β is irreducible as well.

Now assume that L/K has property (N^*). Let $(a_i)_{i \in I}$ be an irreducible block in \mathcal{O}_L and $\sigma_i \in G$ be such that $(\sigma_i a_i)_{i \in I}$ is a block. For each $i \in I$ choose a prime ideal $p_i \in a_i$. The ideal $\prod_{i \in I} p_i$ is a principal ideal generated by an irreducible element $\alpha \in \mathcal{O}_L$. The ideal $\prod_{i \in I} p_i^{\sigma_i}$ is also a principal ideal generated by some $\beta \in \mathcal{O}_L$ with $N\alpha \sim N\beta$. So β is irreducible, and therefore the block $(\sigma_i a_i)_{i \in I}$ is also irreducible, which proves (N^*) for (G, \mathcal{O}_L).

One can generalize Proposition 1 by taking L the quotient field of an arbitrary Dedekind ring, but note that for the second part of the proof we need each ideal class of L to contain at least one prime ideal. Proposition 1 shows the way to prove Theorem 1. We will characterize all pairs (G, A) of multiplicative groups G and G-modules A having property (N^*), and then transfer into algebraic number theory. For technical reasons we need another characterization of property (N^*) (see [1]):

Proposition 2. Let G be a group and A a G-module. Then (G, A) has property (N^*) iff the following holds:

For each pair of mappings $c: G \to A$ and $d: G \to A$ with

$$\{\sigma \in G \mid c(\sigma) \neq 0 \text{ or } d(\sigma) \neq 0\} \text{ finite}$$

and

$$c \neq 0, \quad d \neq 0, \quad \sum_{\sigma \in G} c(\sigma) = \sum_{\sigma \in G} d(\sigma) = \sum_{\sigma \in G} \sigma(c(\sigma) + d(\sigma)) = 0,$$

(*)
the block \((\sigma c(\sigma), \varrho d(\varrho))\) \((\sigma, \varrho \in G, c(\sigma) \neq 0, d(\varrho) \neq 0)\) is reducible.

Proof of Proposition 2. Assume that \((G, A)\) has property \((N^*)\) and let \(c, d\) be mappings satisfying \((*)\). The block \((c(\sigma), d(\varrho))\) \((\sigma, \varrho \in G, c(\sigma) \neq 0, d(\varrho) \neq 0)\) is a reducible block in \(A\) with the proper subblock \((c(\sigma))\) \((\sigma \in G, c(\sigma) \neq 0)\). Thus \((*)\) implies that \((\sigma c(\sigma), \varrho d(\varrho))\) \((\sigma, \varrho \in G, c(\sigma) \neq 0, d(\varrho) \neq 0)\) is a block, which is reducible, since \((N^*)\) holds.

Now assume that \((G, A)\) does not have property \((N^*)\). Then there exist an irreducible block \((a_i)_{i \in I}\) and a family \((\sigma_i)_{i \in I}\) so that \((\sigma_i a_i)_{i \in I}\) is a reducible block. Let \(I = I_1 \cup I_2\) be a nontrivial partition such that \((\sigma_i a_i)_{i \in I_1}\) and \((\sigma_i a_i)_{i \in I_2}\) are blocks. Define the mappings \(c, d: G \to A\) by

\[
c(\sigma) = \sum_{i \in I_1} \sigma_i a_i \quad \text{and} \quad d(\sigma) = \sum_{i \in I_2} \sigma_i a_i \quad \text{for all} \quad \sigma \in G,
\]

where empty sums are equal to \(0 \in A\). Then \(c, d\) satisfy \((*)\), but \((\sigma c(\sigma), \varrho d(\varrho))\) \((\sigma, \varrho \in G, c(\sigma) \neq 0, d(\varrho) \neq 0)\) is irreducible, which completes the proof of Proposition 2.

For a \(G\)-module \(A\) set

\[G_0 = \{\sigma \in G \mid \sigma a = a \text{ for all } a \in A\}.\]

\(G_0\) is a normal subgroup of \(G\) and \(A\) is a faithful \((G/G_0)\)-module. It is easy to check that \((G, A)\) has property \((N^*)\) iff \((G/G_0, A)\) has property \((N^*)\). Therefore, we can confine ourselves to faithful \(G\)-modules \(A\), and hence assume \(G\) to be contained in \(\text{End}(A)\), the ring of endomorphisms of \(A\). Denote by \(I \in G\) the identity, by \(-I\) the automorphism mapping each \(a \in A\) onto \(-a\), and by \(0\) the endomorphism mapping each \(a \in A\) onto \(0\).

Theorem 2. Let \(G\) be a group and \(A\) a faithful \(G\)-module. Then \((G, A)\) has property \((N^*)\) exactly in the following cases:

(a) \(A \cong C_2 \oplus C_2\) and \(G \leq \text{Aut}(A) \cong S_3\) (\(S_3\) denotes the symmetric group on 3 elements);

(b) \(G = \{I\}\);

(c) \(G = \{I, -I\}\), and \(A\) contains no element of order 2.

By Proposition 1 and the above remarks, Theorem 1 is obtained from Theorem 2 if one factorizes the Galois group \(G\) of an extension \(L/K\) by its normal subgroup \(G_0\) consisting of all automorphisms acting trivially on \(\mathcal{C}_L\), which gives \(\mathcal{C}_L\) the structure of a faithful \((G/G_0)\)-module.
3. Proof of Theorem 2. The proof is made up of several lemmas.

Lemma 1. Let \(G = \{1, -1\} \) and \(A \) be a faithful \(G \)-module. Then \((G, A)\) has property (N*) iff \(A \) contains no element of order 2.

Proof. Let \(G = \{1, -1\} \) and \(A \) be a faithful \(G \)-module. We use Proposition 2 to check property (N*) for \((G, A)\). Two mappings \(c, d : G \to A \) satisfying (*) of Proposition 2 can only have the form

\[
\begin{array}{c|cc}
\sigma & c(\sigma) & d(\sigma) \\
\hline
1 & x & y \\
-1 & -x & -y \\
\end{array}
\]

with \(x, y \in A \setminus \{0\} \) and

\[
\sum_{\sigma \in G} \sigma \left(c(\sigma) + d(\sigma) \right) = 2(x + y) = 0.
\]

So \((G, A)\) has property (N*) iff, for all \(x, y \in A \setminus \{0\} \), \(2(x + y) = 0 \) implies that \((x, x, y, y)\) is a reducible block in \(A \).

Suppose \(A \) has no element of order 2. Then \(2(x + y) = 0 \) implies \(y = -x \) and \((x, x, -x, -x)\) is reducible, showing that \((G, A)\) has property (N*).

Suppose there exists \(z \in A \) with order 2. Since \(A \) is a faithful \(\{1, -1\} \)-module, the exponent of \(A \) is greater than 2. So there exists \(x \in A \setminus \{0, z\} \) of order greater than 2. Put \(y = z - x \); then \(2(x + y) = 2z = 0 \), but the block \((x, x, z - x, z - x)\) is irreducible. Thus \((G, A)\) does not have property (N*) and Lemma 1 is proved.

Lemma 2 (see [1], Proposition 2). Let \(A \) be a faithful \(G \)-module and suppose \((G, A)\) has property (N*). Then for \(q \in G \) either \(q^2 - 1 = 0 \) or \(q^2 + q + 1 = 0 \).

Proof. Assume \(q \in G \) with \(q^2 \neq 1 \). Consider \(x \in A \) with \(q^2 x \neq x \) and define \(c, d : G \to A \) by

\[
\begin{array}{c|cc}
\sigma & c(\sigma) & d(\sigma) \\
\hline
1 & x & -x - qx \\
q & 0 & x + qx \\
q^2 & -x & 0 \\
\end{array}
\]

(All elements of \(G \) not listed in the table are mapped onto 0.)

\(c \) and \(d \) satisfy (*) of Proposition 2 and \((G, A)\) has property (N*), so the block

\((x, -q^2 x, -x - qx, qx + q^2 x)\)
must be reducible. As \(x, qx, q^2x, qx + x, q^2x - x \) are not 0, necessarily \(q^2x + qx + x = 0 \). This gives

\[
A = \ker(1-q^2) \cup \ker(1+q+q^2),
\]

but \(A \) cannot be the union of two proper subgroups, so

\[
A = \ker(1+q+q^2),
\]

and Lemma 2 is proved.

Lemma 3. Let \(G \) be a group and \(A \cong C_2 \oplus C_2 \) be a faithful \(G \)-module. Then \((G, A)\) has property \((N^*)\).

Proof. If \(G = \{I\} \), the lemma is obvious, so assume that \(G \neq \{I\} \). We will use Proposition 2 again. If \(c, d: G \to A \) satisfy \((*)\), the block \((\sigma c(\sigma), \phi d(\phi))\) \((\phi, \tau \in G, \sigma c(\sigma) \neq 0, d(\phi) \neq 0)\) has at least 4 elements. Davenport's constant for \(C_2 \oplus C_2 \) is 3, so this block is always reducible. (For the definition of Davenport's constant and its computation in some special cases see [4] and [5].)

Lemma 4. Let \(A \) be a faithful \(G \)-module and \((G, A)\) have property \((N^*)\). If there exists \(q \in G \setminus \{I\} \) with \(q^2 + q + 1 = 0 \), then

\[
A \cong C_2 \oplus C_2.
\]

Proof. Let \(q \in G \setminus \{I\} \) with \(q^2 + q + 1 = 0 \), which implies \(q^3 = I \). Consider \(x \in A \setminus \ker(1-q) \) and define \(c, d: G \to A \) by

<table>
<thead>
<tr>
<th>(\sigma)</th>
<th>(c(\sigma))</th>
<th>(d(\sigma))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(x)</td>
<td>(-x + qx)</td>
</tr>
<tr>
<td>(q)</td>
<td>(q^2x)</td>
<td>0</td>
</tr>
<tr>
<td>(q^2)</td>
<td>(qx)</td>
<td>(x - qx)</td>
</tr>
</tbody>
</table>

(All elements of \(G \) not listed in the table are mapped onto 0.)

\(c \) and \(d \) satisfy \((*)\), so by Proposition 2 the block

\[
(x, x, x, -x + qx, q^2x - x)
\]

must be reducible, which can only hold if \(2x = 0 \) or \(3x = 0 \). If \(y \in \ker(1-q) \), then

\[
(q^2 + q + 1)y = 3y = 0.
\]

Combining these results, we see that the exponent of \(A \) is 2 or 3.

Assume that the exponent of \(A \) is 3. Choose \(x \in A \setminus \ker(1-q) \) and define \(c, d: G \to A \) by
\[\begin{array}{c|cc}
\sigma & c(\sigma) & d(\sigma) \\
\hline
1 & 2x & 0 \\
\varrho & \times & \times \\
\varrho^2 & 0 & 2x \\
\end{array} \]

(All elements of \(G \) not listed in the table are mapped onto 0.)

c and \(d \) satisfy (\(*\)), but the block \((2x, \varrho x, \varrho x, 2\varrho^2 x)\) turns out to be irreducible, contradicting property \((\text{N}^*)\). Therefore, the exponent of \(A \) must be 2. We have \(\ker (I - \varrho) = \{0\} \), because the order of every element of \(\ker (I - \varrho) \) divides 3. If \(x \in A \setminus \{0\} \), then \(x, \varrho x, \varrho^2 x = x + \varrho x \) are different elements of \(A \) and \(A_x = \{0, x, \varrho x, \varrho^2 x\} \) is a subgroup of \(A \), invariant under the action of \(\varrho \). If there exists \(y \in A \setminus A_x \), we define \(c, d : G \to A \) by

\[\begin{array}{c|ccc}
\sigma & c(\sigma) & d(\sigma) \\
\hline
1 & x & x + \varrho y \\
\varrho & x & x + \varrho^2 y \\
\varrho^2 & 0 & y \\
\end{array} \]

(All elements of \(G \) not listed in the table are mapped onto 0.)

c and \(d \) satisfy (\(*\)), but the block

\((x, \varrho x, x + \varrho y, \varrho x + y, \varrho^2 y)\)

is irreducible, which contradicts property \((\text{N}^*)\). Therefore,

\[A = A_x \cong C_2 \oplus C_2. \]

Lemma 3 shows that property \((\text{N}^*)\) holds in this case, which completes the proof of Lemma 4.

Lemma 5. Let \(G \neq \{1\}, \ G \neq \{1, -1\}, \ A \) be a faithful \(G \)-module and \((G, A)\) have property \((\text{N}^*)\). If \(\varrho^2 - 1 = 0 \) holds for all \(\varrho \in G \), then \(A \cong C_2 \oplus C_2 \).

Proof. Let \(\varrho \in G, \ \varrho \neq \pm 1 \). If \(\ker (I - \varrho) = \{0\} \), then for all \(x \in A \) we have

\[(I - \varrho)(I + \varrho) x = 0 \quad \text{and} \quad (I + \varrho) x \in \ker (I - \varrho) = \{0\}. \]

Then \(\varrho = -1 \), contrary to our choice of \(\varrho \). Thus there exists \(y \in \ker (I - \varrho) \setminus \{0\} \). For \(x \in A \setminus \ker (I - \varrho) \) define two mappings \(c, d : G \to A \) by

\[\begin{array}{c|ccc}
\sigma & c(\sigma) & d(\sigma) \\
\hline
1 & x & -x + y \\
\varrho & -x & x - y \\
\end{array} \]

(All elements of \(G \) not listed in the table are mapped onto 0.)
c and d satisfy (*), so by Proposition 2 the block
\[(x, -qx, -x+y, qx-qy)\]
must be reducible. This can only occur if \(qx = -x+y\) holds. It follows easily that \(\ker(1-q) = \{0, y\}\), the order of \(y\) is 2, and \(qx = -x+y\) for all \(x \in A \setminus \ker(1-q)\). If there exists an \(\bar{x} \in A \setminus \ker(1-q)\) with \(\bar{x} \neq x\), then
\[q(x + \bar{x}) = -(x + \bar{x}) \neq -(x + \bar{x}) + y,
\]
so \(x + \bar{x}\) must be contained in \(\ker(1-q)\) and \(A\) has at most 5 elements. Since \(y \in A\) has order 2 and the only automorphisms of \(C_4\) are \(I\) and \(-I\), only \(A \cong C_2 \oplus C_2\) remains possible.Lemma 3 assures that \((N^*)\) holds in this case, and Lemma 4 is proved.

Proof of Theorem 2. Assume that \(A\) is a faithful \(G\)-module and that \((G, A)\) has property \((N^*)\). If \(G = \{I\}\), then \((G, A)\) has property \((N^*)\) for arbitrary \(A\), which gives part (b) of Theorem 2. If \(G = \{I, -I\}\), part (c) of Theorem 2 results from Lemma 1. If \(G \neq \{I\}\) and \(G \neq \{I, -I\}\), then Lemmas 2, 4 and 5 imply part (a) of Theorem 2.

I would like to thank Professor F. Halter-Koch for many discussions and advice during the preparation of the manuscript.

REFERENCES

INSTITUT FÜR MATHEMATIK
KARL-FRANZENS-UNIVERSITÄT
HALBÄRTHGASSE 1
A-8010 GRAZ

Reçu par la Rédaction le 30. 5. 1983