PRECOMPLETE CLASSES OF OPERATIONS
ON AN UNCOUNTABLE SET

BY

ROY O. DAVIES (LEICESTER) AND IVO G. ROSENBERG (MONTRÉAL)

Let O be the set of finitary operations on a set A. A precomplete (or maximal) class is a dual atom in the lattice of composition closed subsets of O. We are interested in the precomplete classes containing all unary operations on A. In the late thirties Slupecki found that for A finite the set of all essentially unary or nonsurjective operations is the unique precomplete class containing all unary operations. In the sixties Gavrilov proved that for $|A| = \aleph_0$ there are exactly two such maximal classes. In this paper we look at the problem for $|A| > \aleph_0$. For $|A|$ regular one such maximal class is found by complete analogy with the countable case. This does not work for the other maximal class determined by Gavrilov as for $|A| = \aleph_1$ (assuming CH) the immediate analogue does not have the standard form.

The financial support provided by the National Research Council of Canada operating grant A–9128 is gratefully acknowledged. The first author also is grateful to his colleague R. L. Goodstein for arousing his interest in this area.

1. Preliminaries. Let $\alpha > 1$ be a cardinal (= initial ordinal) and let A be the set of all ordinals less than α. For $n = 1, 2, \ldots$ let $O^{(n)}$ be the set of all n-ary operations on A (i.e. mappings $A^n \to A$) and let $O = \bigcup_{n=1}^{\infty} O^{(n)}$; for our purposes the zero operations do not fit well and are replaced by unary constant operations. For any $F \subseteq O$ the set $F \cap O^{(n)}$ is denoted by $F^{(n)}$. A set $C \subseteq O$ is called a closed class if it contains all compositions (also called compound operations or superpositions) of its elements and any operation obtained by permuting or identifying variables of an operation from C. Let $L = L_\alpha$ be the set of closed classes. A. I. Mal'tsev ([17]) pointed out that L is the set of all subalgebras of a certain algebra $\mathcal{O} = \langle O; *, \zeta, \tau, A \rangle$ on O of type $\langle 2, 1, 1, 1 \rangle$. Hence (L, \subseteq) is an algebraic lattice ([5], [11]). The
subalgebra of \(O \) generated by \(M \subseteq O \) (i.e., the least closed class containing \(M \)) is denoted by \([M]\). The countable lattice \(L_\alpha \) (known as Post’s lattice) is completely described in \([20]\) but little is known for \(\alpha > 2 \) except that \(|L_\alpha| = 2^{\aleph_0} \) for \(2 < \alpha < \aleph_0 \) and \(|L_\alpha| = 2^{2\alpha} \) for \(\alpha > \aleph_0 \). The dual atoms of \(L_\alpha \) are called maximal or precomplete classes. For a finite \(\alpha \) the lattice \(L_\alpha \) is dually atomic and the set \(M_\alpha \) of the dual atoms of \(L_\alpha \) is completely described in: \([20]\) for \(\alpha = 2 \), \([12]\) for \(\alpha > 3 \). For \(\alpha > \aleph_0 \), a few classes from \(M_\alpha \) are known \([7], [10]\) for \(\alpha = \aleph_0 \), \([25]\) for \(\alpha > \aleph_0 \), although it has been proved indirectly that \(|M_\alpha| = |L_\alpha|\) \([9], [10]\) for \(\alpha = \aleph_0 \), \([26]\) for \(\alpha > \aleph_0 \).

An operation \(f \in O^{(n)} \) (\(n > 1 \)), is said to be essential or Slupecki if \(f \) takes on all values and depends on at least two variables. The following Slupecki Criterion is not only one of the earliest but also one of the most important results in the theory: let \(2 < \alpha < \aleph_0 \) and let \(M \subseteq O \) contain \(O^{(1)} \). Then \(M \) is complete (i.e. \([M] = O\)) iff \(M \) contains an essential function \([31], [12], [4]\); several generalizations are given in \([12], [28], [33], [34], [18]\). It can be formulated as follows: For \(2 < \alpha < \aleph_0 \) the set \(S \) of all non-essential operations is a unique maximal class in the interval \(\mathcal{K}_\alpha = [O^{(1)}, O] \) (actually \(\mathcal{K}_\alpha \) is a chain of length \(\alpha + 1 \) \([3]\)).

An analogue of the Slupecki criterion for \(\alpha = \aleph_0 \) has been found by G. P. Gavrilov \([10]\) who proved that \(\mathcal{K}_\alpha \) is dually atomic and contains precisely two maximal classes (a description of these classes will be given in Sections 3, 5: classes \(\text{Pol} G \), \(\text{Pol} H \)). The importance of the Slupecki criterion in the finite case and the fact that \(\mathcal{K}_\alpha \) can be expected to be one of the simplest intervals in \(L_\alpha \) lead naturally to the problem of determining the dual atoms in \(\mathcal{K}_\alpha \) for \(\alpha > \aleph_0 \). The following very weak form of the Slupecki criterion is well known and essentially due to Sierpiński \([30]\) (see also \([15], [5, II. 5.4]\)).

Lemma 1.1. Let \(\alpha > \aleph_0 \) and let \(O^{(1)} \subseteq F \subseteq O \). Then \(F \) is complete if and only if \([F]^{(2)} \) contains an injection.

It seems that very little is known about \(\mathcal{K}_\alpha \) for \(\alpha > \aleph_0 \). In this paper without much trouble for regular \(\alpha \) one maximal class in \(\mathcal{K}_\alpha \) is found by complete analogy with the countable case. However this does not work for the other maximal class determined by Gavrilov. In Section 2 a subset of \(\mathcal{K}_\alpha \) is determined which contains all maximal classes from \(\mathcal{K}_\alpha \), then one maximal class in \(\mathcal{K}_\alpha \) is found for every \(\alpha > \aleph_0 \). In Section 5 it is shown that for \(\alpha = \aleph_1 \) (assuming CH), the immediate analogue of the second maximal class given by Gavrilov does not have the standard form.

The set \(\mathcal{K}_\alpha \) can be conveniently discussed in terms of sets of operations preserving relations. Let \(I \) be a non-empty set. An \(I \)-relation or \(|I|\)-ary relation \(\varrho \) on \(A \) is a subset of the set \(A^I \) of all mappings \(I \to A \). If \(|I| = k < \aleph_0 \), we shall identify \(A^I \) and \(A^k \), and the \(I \)-relations are simply the \(k \)-ary relations.
Throughout ϱ denotes an I-relation on A. We say that $f \in O^{(n)}$ preserves ϱ ([16]) or f is a polymorph of ϱ if $fg_1 \ldots g_n \in \varrho$ whenever all $g_i \in \varrho$. Here and in the sequel $h = fg_1 \ldots g_n$ is the mapping $I \to A$ defined by $h(i) = f(g_i, i) \ldots (g_n, i)$ for every $i \in I$. (The correspondence "f preserves ϱ" induces a Galois connection between the set of all closed classes of operations containing all projections and the subalgebras of a certain naturally defined, but for $\alpha \geq \aleph_0$ infinitary, algebra on a set of relations ([2], [24]).) The set of all $f \in O$ preserving ϱ is denoted by Pol_ϱ. It has been shown e.g. in [24, Proposition 1] that the relations ϱ for which $O^{(1)} \subseteq \text{Pol}_\varrho$ can be described as follows:

Denote the set of all (binary) equivalence relations on I by $C(I)$. Given $f : B \to D$, set $\ker(f) = \{(x, y) \in B^2 : fx = fy\}$. For $\gamma \in C(I)$ we set $\Delta_\gamma = \{f \in A^I : \ker(f) \supseteq \gamma\}$. Note that Δ_γ is an I-relation on A and that $\gamma' \subseteq \gamma'' \Rightarrow \Delta_{\gamma'} \supseteq \Delta_{\gamma''}$. The relation $\bigcup_{\gamma \in G} \Delta_\gamma$ with $G \subseteq C(I)$ will be denoted by ΔG. Let ϱ be an I-relation on A. Then $\text{Pol}_\varrho \supseteq O^{(1)}$ if and only if $\varrho = \Delta G$ where $G \subseteq C(I)$. Moreover $\text{Pol}_\varrho = O$ if and only if $\varrho = \Delta G$ where G is closed under intersection ([24, Corollary 1]).

The coordinates (or components) of $a \in A^n$ will be throughout denoted by (a_1, \ldots, a_n). The image of a under the mapping f will be denoted by $fa_1 \ldots a_n$ or fa. The image of A^n under f is denoted by fA^n; in particular, for $n = 2$ the image of $C \times D \subseteq A^2$ is denoted by fCD and the images of $\{a\} \times D$ and $C \times \{a\}$ by faD and fCa. The operations $e_i^a \in O^{(n)}$ ($1 \leq i \leq n$), defined by $e_i^a a = a_i$ for every $a \in A^n$, are called projections ([11]) (other names: trivial, identity, or selective operations). The set of all projections will be denoted by J. A closed class containing J is called a polynomial class.

2. A-relations. Let $0 < k < \aleph_0$. By definition any $F \subseteq O^{(k)}$, being a set of mappings $A^k \to A$, is an A^k-relation on A. The following statement can be more or less explicitly found in many papers. The proof is routine and therefore omitted.

Proposition 2.1. Let C be a polynomial class and let $D_k = \text{Pol} C^{(k)}$ ($0 < k < \aleph_0$). Then

$$D_1 \supseteq D_2 \supseteq \ldots, \quad D_k^{(k)} = C^{(k)}, \quad C = \bigcap_{k=1}^{\infty} D_k.$$

We need also the following equivalence relations \sim_k on L_2: we set

$$M \sim_k N \iff M^{(k)} = N^{(k)}.$$

The relation \sim_k was implicitly used by Post ([20]) in his classification of L_2. The relations \sim_k and \sim_α on L_α ($\alpha < \aleph_0$) have been used in [16], [12] in proving that L_α is dually atomic.

Proposition 2.2. The relation \sim_k properly contains \sim_{k+1} for every k.

Proof. This was shown in [20] for \(\alpha = 2 \), and we can imbed \(\mathcal{L}_2 \) into any \(\mathcal{L}_2, \alpha > 2 \). \(\Box \)

Post ([20, p. 46]) observed that each equivalence class of \(\sim \) in \(\mathcal{L}_2 \) has a greatest element and asked whether this holds in general. The answer is affirmative for every \(k \). Indeed from 2.1 we get:

Proposition 2.3. Let \(M \) and \(N \) be polynomial classes. Then

\[
M \sim N \iff [M^{(k)}] \subseteq N \subseteq Pol M^{(k)}.
\]

Thus \(Pol M^{(k)} \) is the greatest element in the equivalence class of \(\sim \) containing \(M \). The dual atoms of intervals in \(\mathcal{L} \) satisfy:

Proposition 2.4. Let \(H \) be a polynomial class and let \(M \) be a dual atom of the interval \([J, H]\). Then \(M = H \cap Pol M^{(k)} \) where \(k \) is the least integer such that \(M^{(k)} \subset H^{(k)} \).

(We use \(\subset \) for strict inclusion.)

Proof. Since \(M \subset H \) there exists the least \(k > 0 \) such that \(M^{(k)} \subset H^{(k)} \). Let \(T = H \cap Pol M^{(k)} \). Then \(T \subset H \) because by Proposition 2.1 we have \(T^{(k)} = H^{(k)} \cap M^{(k)} \subset H^{(k)} \). From \(M \) being a dual atom, \(M \subseteq T \subset H \) and \(T \in \mathcal{L} \) we obtain \(M = T \). \(\Box \)

Proposition 2.5. Each maximal class is a polynomial class.

Proof. Let \(M \) be maximal. Suppose that \(J \not\subseteq M \). Then \(M \subset [M \cup J] \subseteq O \) implies \([M \cup J] = O\). Choose \(a, b \in A \), \(a \neq b \), and define \(fab = b, fbb = a \) and \(fx_1 x_2 = x_1 \) otherwise. Now \(f \in O = [M \cup J] \) has no fictitious variables and therefore belongs to \(M \) (since \([M \cup J]\) consists of \(M, J \), and the functions obtained from those of \(M \) by adding fictitious variables). However from \(f (fx_1 x_2) x_2 = x_1 \) we see that \(e_1^2 \in M \) and therefore \(J \subseteq M \), a contradiction. \(\Box \)

Corollary 2.6. Let \(M \) be a maximal class. If \(M^{(1)} \subseteq O^{(1)} \), then \(M = Pol M^{(1)} \). If \(M^{(1)} = O^{(1)} \), then \(M = Pol M^{(2)} \) and \(M^{(2)} \) is of the form \(\Delta G \).

Proof. This follows from 2.5, 2.4 (with \(H = 0 \)), the fact that \([O^{(2)}] = O\) (Slupecki criterion and Lemma 1.1) and the remark towards the end of Section 1. \(\Box \)

From now on we assume that \(A \) is infinite. We are interested in maximal classes containing \(O^{(1)} \). Let \(Q = \{ f \in O^{(2)} : f \) depends on at most one variable\}. For \(h \in O^{(2)} \) (\(i = 0, 1, 2 \)) let \(h = h_0 h_1 h_2 \) be the function from \(O^{(2)} \) satisfying \(hx = h_0(h_1 x)(h_2 x) \) for every \(x \in A^2 \). Setting \(N = M^{(2)} \) in Corollary 2.6 we obtain that each maximal class containing \(O^{(1)} \) has the form \(Pol N \) where the \(A^2 \)-relation \(N \) on \(A \) is a subset of \(O^{(2)} \) such that \(J \subseteq N \subseteq M = Pol N \) and \(N = \Delta G \) for some \(G \subseteq C(I) \). Thus \(N \) has the following properties:

(a) \(e_1^2, e_2^2 \in N \);
(b) \(h \in N, \ g \in O^{(2)}, \ \ker g \supseteq \ker h \Rightarrow g \in N, \)
(c) \(h_i \in N \ (i = 0, 1, 2) \Rightarrow h_0 h_1 h_2 \in N \)
(the last one follows since \(N = (\text{Pol} \ N)^{(2)} \)) and therefore is a special kind of simple Menger algebra ([32]). The sets \(N \subseteq O^{(2)} \) satisfying (a)-(c) will be called basic Menger algebras. Note that every basic Menger algebra \(N \) contains \(Q \) and that \(h \in N \Rightarrow h^* \in N \) where \(h^* = h e_2^* e_1^* \) satisfies \(h^* x = h x_2 x_1 \) for every \(x \in A^2 \). We say that a basic Menger algebra \(N \subseteq O^{(2)} \) is 2-precomplete if for each \(h \in O^{(2)} \setminus N \) the set \(O^{(2)} \) is the least basic Menger algebra containing \(N \cup \{ h \} \) (i.e., \([N \cup \{ h \}] \supseteq O^{(2)} \) for each \(h \in O^{(2)} \setminus N \).

Lemma 2.7. A basic Menger algebra \(N \) is 2-precomplete if and only if \([N \cup \{ h \}]^{(2)} \) contains an injection for every \(h \in O^{(2)} \setminus N \).

Proof. Necessity is obvious since \(\alpha \gg \aleph_0 \). Sufficiency: if \([\{ h \} \cup N]^{(2)} \) contains an injection, then since \(O^{(1)} \subseteq N \), it follows from Lemma 1.1 that \([\{ h \} \cup N] = O \), whence \([\{ h \} \cup N]^{(2)} = O^{(2)} \). \(\square \)

Theorem 2.8. If a basic Menger algebra \(N \) is 2-precomplete, then \(\text{Pol} \ N \) is maximal.

Proof. Let \(g \in O^{(n)} \setminus \text{Pol} \ N \). Then there exist \(h_1, \ldots, h_n \in N \) such that \(h \in O^{(2)} \) defined by \(h x = g(h_1 x) \ldots (h_n x) \) for every \(x \in A^2 \) does not belong to \(N \). By virtue of (c) in the definition of basic Menger algebras \(h_i \in N \subseteq \text{Pol} \ N \). Thus \(h \in B = [\{ g \} \cup \text{Pol} \ N] \), hence \(B \supseteq [N \cup \{ h \}] \supseteq O^{(2)} \) proving \(B = O \) (by Lemma 1.1).

3. A maximal class for regular \(\alpha \). For every \(f \in O^{(2)} \) let \(f^* \in O^{(2)} \) be defined by \(f^* x = f x_2 x_1 \) for every \(x \in A^2 \). Let \(G \) denote the set of all \(f \in O^{(2)} \) with the property that either \(f \) or \(f^* \) maps each \(B \times A \) with \(B \subseteq A, |B| < \alpha \) onto a set of cardinality less than \(\alpha \). Note that for regular \(\alpha \) it suffices to consider only singletons for \(B \).

Lemma 3.1. The set \(G \) is a basic Menger algebra.

Proof. Clearly it suffices to verify the condition (c) only. Let \(h_i \in G \ (i = 0, 1, 2), \ h = h_0 h_1 h_2 \) and suppose, for example, that \(h_0 \) and \(h^*_1 \) have the above property. Then for every \(B \subseteq A, |B| < \alpha \) we have

\[
|h^* BA| \leq |h_0 h^*_1 BA h^*_2 BA| \leq |h_0 CA| < \alpha
\]

because \(|C| = |h^*_1 BA| < \alpha \). The other cases are similar. Hence \(h \in G \). \(\square \)

Theorem 3.2. The class \(\text{Pol} \ G \) is maximal for each regular \(\alpha \).

Proof. We assume that \(A \) is the set of all ordinals less than \(\omega_\mu \) (where \(\alpha = \omega_\mu \)). By 3.1 and 2.8 it suffices to show that \(G \) is 2-precomplete. Let \(h \in O^{(2)} \setminus G \). Because \(\alpha \) is regular, there exists \(a_1, a_2 \in A \) such that \(|ha_1 A| = |hAa_2| = \alpha \). Using functions from \(O \subseteq G \) we can achieve that \(a_1 = a_2 = 0 \). Choose sets \(A_i \subseteq A \) such that \(0 \in A_i, |A_i| = \alpha \ (i = 1, 2) \), and \(h \) is injective on \((A_1 \times \{ 0 \}) \cup (\{ 0 \} \times A_2)\). Let \(T_1 = \{(x, y) \in A^2 : x \geq y\}, \ T_2 = A^2 \setminus T_1 \), and let
$g_i \in O^{(2)}$ be such that (i) $g_i|T_i$ is an injection into A_i and (ii) $g_i(A^2 \setminus T_i) = \{0\}$. It is easy to see that $g_1 \in G$ (because $|g_1 \alpha A| \leq 1 + |\{x: x \leq \alpha\}| < \alpha$) and similarly $g_2 \in G$. Moreover $hg_1g_2 \in [\{h\} \cup G]^{(2)}$ is injective and the required 2-precompleteness now follows from 2.7. \(\square\)

4. A maximal class for singular α. In what follows we suppose that α is a singular infinite cardinal, and that A is a set with $|A| = \alpha$. A subset $C \times D$ of A^2 with $|C| = |D| = \gamma$ will be called a γ-square. Let F denote the set of all functions $f \in O^{(2)}$ with the property: (I) There exists a selfmap γ (depending on f) of the set C_α of cardinals less than α such that for every $\beta \in C_\alpha$, each $\gamma(\beta)$-square contains a β-square on which f depends at most on one variable.

Theorem 4.1. The set F is a basic Menger algebra.

Proof. Clearly conditions (a) and (b) in the definition of basic Menger algebra are satisfied.

Now let $h_1, h_2, h_3 \in F$, let $h = h_3h_1h_2$, and denote the associated functions, whose existence is given by (I), by $\gamma_1, \gamma_2, \gamma_3$. We shall show that for the associated function γ for h we may take the function $\gamma(\beta) = \gamma_1(\gamma_3(\gamma_2(\beta)))$; here we suppose, as we may, that $\beta \geq \aleph_0$.

Suppose that $C \times D \subseteq A^2$ and $|C| = |D| = \gamma_1(\gamma_2(\gamma_3(\beta)^+))$. We can find a set $C_1 \times D_1 \subseteq C \times D$ with $|C_1| = |D_1| = \gamma_2(\gamma_3(\beta)^+)$ on which h_1 depends on at most one variable, and then a set $C_2 \times D_2 \subseteq C_1 \times D_1$ with $|C_2| = |D_2| = \gamma_3(\beta)^+$ on which h_2 depends on at most one variable. If it is the same variable in both cases, then also h depends only on this variable on $C_2 \times D_2$, and we are done. Otherwise, we may suppose that on $C_2 \times D_2$ the operation h_1 depends only on x, say $h_1(x, y) = g_1(x)$, and h_2 depends only on y, say $h_2(x, y) = g_2(y)$. Since $\gamma_3(\beta)^+$ is a regular cardinal, we can find a set $C_3 \subseteq C_2$ with $|C_3| = \gamma_3(\beta)^+$ on which either g_1 is constant, in which case h depends at most on y on $C_3 \times D_2$ and we are done, or g_1 is injective, as we may therefore suppose. Similarly we can find a set $D_3 \subseteq D_2$ with $|D_3| = \gamma_3(\beta)^+$ on which we may suppose g_2 injective. But now $|g_1C_3| = |g_2D_3| = \gamma_3(\beta)^+ > \gamma_3(\beta)$, so we can find a set $C_4 \times D_4 \subseteq g_1C_3 \times g_2D_3$ with $|C_4| = |D_4| = \beta$ on which h_3 depends on at most one variable. Upon taking $C_0 = C_3 \cap g_1^{-1}(C_4)$, $D_0 = D_3 \cap g_2^{-1}(D_4)$, we have $C_0 \times D_0 \subseteq C \times D$, $|C_0| = |D_0| = \beta$, and h depends on at most one variable on $C_0 \times D_0$. Thus F satisfies condition (c), and is therefore a basic Menger algebra.

In order to prove that F is also 2-precomplete, it is convenient to express the defining property in a somewhat different form; to do this we appear to need to assume the generalized continuum hypothesis (GCH).

Theorem 4.2 (GCH). The following three properties are equivalent for $f \in O^{(2)}$.

(I) For every cardinal $\beta < \alpha$ there exists a cardinal $\gamma = \gamma(\beta) < \alpha$ such that each γ-square contains a β-square on which f depends on at most one variable.
(II) There exists a cardinal $\beta < \alpha$ such that f is injective on no β-square.

(III) f is not injective on any disjoint union of β_i-squares $\{i \in I\}$ such that $|I| < \alpha$ and $\sum_{i \in I} \beta_i = \alpha$.

Remark 4.3. It would be easy to show that assuming GCH the following property is also equivalent to (I); however, we shall not need this fact.

(IV) f is not injective on any disjoint union $\bigcup_{i \in I, j \in I} (C_{ij} \times D_{ij}) \subseteq A^2$ where $|C_{ij}| = \beta_i < \alpha$, $|D_{ij}| = \beta_j < \alpha$, $|I| < \alpha$, and $\sum_{i \in I} \beta_i = \alpha$.

Proof of theorem. Since obviously (I) \Rightarrow (II) \Rightarrow (III), it would be enough to prove (III) \Rightarrow (I); but it is convenient to prove (III) \Rightarrow (II) and (II) \Rightarrow (I).

(III) \Rightarrow (II). Write $\alpha = \sum_{\theta < \omega_1} \beta_\theta$ where $\aleph_\varphi < \beta_0 < \beta_1 < \ldots < \beta_\alpha$ and each β_θ is regular. If (II) is false then for each θ, f is injective on a β_θ-square $C_\theta \times D_\theta$. Define sets $S_\theta = \bigcup_{\psi < \theta} (C_\psi \times D_\psi)$. Because β_θ is regular we have $|S_\theta| \leq \sum_{\psi < \theta} \beta_\psi < \beta_\theta$, hence there exist β_θ-squares $C_\theta \times D_\theta \subseteq (C_\theta \times D_\theta) \setminus S_\theta$. Now f is injective on the disjoint union of the squares $C_\theta \times D_\theta$, so (III) is false.

(II) \Rightarrow (I) (GCH). Let (II) hold and let $\beta_0 < \alpha$ be an infinite cardinal such that f is not injective on any β_0-square $C \times D$. We show that (I) holds with $\gamma(\beta) = \beta^{+++}$ (this could be decreased by a more careful argument) supposing, as we may, that $\beta \geq \beta_0$. Given a β^{+++}-square $C \times D$ let $D_1 \subseteq D$ satisfy $|D_1| = \beta^{+++}$. For every fixed $a \in A$ define $f_a^*, f_a^*: A \to A$ by setting $f_a^*(x) = f(a, x)$ and $f_a^*(x) = f(x, a)$ for every $x \in A$. Let

$$C^* = \{ x \in C : f_x \text{ takes some value } \beta^{+++} \text{ times on } D_1 \},$$

and $C^{**} = C \setminus C^*$. If $x \in C^*$, choose a set $D_2(x) \subseteq D_1$ with cardinal β^{+++} on which f_x is constant; if $x \in C^{**}$, then f_x takes β^{+++} values on D_1, and we choose a set $D_2(x) \subseteq D_1$ with cardinal β^{+++} on which f_x is injective. Choose $C_1 \subseteq C$ with $|C_1| = \beta^{+++}$ and either $C_1 \subseteq C^*$ or $C_1 \subseteq C^{**}$. Assuming GCH, there are only β^{+++} subsets of D_1, so we can choose $C_2 \times D_2 \subseteq C_1 \times D_1$ with $|C_2| = |D_2| = \beta^{+++}$ and $D_2(x) = D_2$ for all $x \in C_2$. If $C_2 \subseteq C^*$ we are done, since f depends at most on x on $C_2 \times D_2$, so we may suppose that $C_2 \subseteq C^{**}$ and $f_x|D_2$ is injective for $x \in C_2$.

Arguing the same way with x, y interchanged, we get a set $C_3 \times D_3 \subseteq C_2 \times D_2$ with $|C_3| = |D_3| = \beta^+$ on which either f depends only on y, and we are done, or (as we may suppose) f_y^* is injective for each y.

Let $D_4 \subseteq D_3$, $|D_4| = \beta$. No value can be in $f_x D_4$ for more than β values of $x \in C_3$, because otherwise $f(x_1, y) = f(x_2, y)$ for two different values $x_1, x_2 \in C_3$, and some $y \in D_4$, making f_y^* non-injective on C_3. Let $\beta = \aleph_\mu$, let
< be a well-ordering of \(C_3 \) of type \(\omega_{\alpha+1} \), and for \(0 \leq \rho < \omega_\mu \) let \(x(\rho) \) be the least (with respect to <) element of \(C_3 \) such that
\[
f_{x(\rho)} D_4 \cap \bigcup \{ f_{x(\sigma)} D_4 : 0 \leq \sigma < \rho \} = \emptyset.
\]
Let \(C_4 = \{ x(\rho) : 0 \leq \rho < \omega_\mu \} \); then \(f \) is injective on \(C_4 \times D_4 \), contrary to hypothesis. The proof is complete. □

Theorem 4.3 (GCH). The set \(F \) is a 2-precomplete basic Menger algebra; consequently \(\text{Pol} F \) is a maximal class in \(O \) containing \(O^{(1)} \).

Proof. The set \(F \) being a basic Menger algebra by Theorem 4.1, in view of Lemma 2.7 it will be enough to show that if \(h \in O^{(2)} \setminus F \), then
\[
[\{ h \} \cup F]^{(2)}
\]
includes an injection.

Let \(h \) be injective on the disjoint union of \(\beta_i \)-squares \(C_i \times D_i \) (\(i \in I, \mid I \mid < \alpha \), and \(\sum_{i \in I} \beta_i = \alpha \); see Theorem 4.2, property (III)). It will be enough to construct two functions \(h_1, h_2 \in F \) such that the mapping \((x, y) \rightarrow (h_1(x, y), h_2(x, y)) \) is an injection from \(A^2 \) to \(\bigcup_{i \in I} (C_i \times D_i) \), since then clearly \(h_1 h_2 \) is an injection belonging to \([\{ h \} \cup F]^{(2)} \).

We may suppose that \(\mid I \mid = cf = \aleph_\psi \), say, that \(I \) consists of the ordinals less than \(\omega_\psi \), and that \(\omega_\psi < \beta_0 < \beta_1 < \ldots \) We can write \(A = \bigcup_{i \in I} A_i \) where \(A_i \subseteq A_j \) for \(i < j \). Let \(u_i : A_i \rightarrow C_i \) and \(v_i : A_i \rightarrow D_i \) be injective (\(i \in I \)). We can now define \(h_1 \) and \(h_2 \) as follows. For any \((x, y) \in A^2 \) let \(i \) be the least ordinal such that \((x, y) \in A_i^2 \), and then let \(h_1(x, y) = u_i(x) \) and \(h_2(x, y) = v_i(y) \). It is easy to see that these functions have the desired properties; in particular, the fact that \(h_2 \) takes only \(\aleph_\psi \) values in each row and \(h_1 \) only \(\aleph_\psi \) values in each column obviously implies that they belong to \(F \). □

5. **A counter-example.** Two strictly increasing sequences \(\langle b_\lambda \rangle_{\lambda < \omega_\nu} \) and \(\langle c_\lambda \rangle_{\lambda < \omega_\mu} \) in \(A \) determine a lower triangle \(\Delta = \{ (b_\lambda, c_\mu) : \mu \leq \lambda < \omega_\nu \} \) and an upper triangle \(\{ (b_\lambda, c_\mu) : \lambda \leq \mu < \omega_\nu \} \) in \(A^2 \). Let \(T \) denote the set of all lower and upper triangles and set
\[
H = \{ f \in O^{(2)} : f \mid \Delta \text{ is injective on no } \Delta \in T \}.
\]

For \(\nu = 0 \) Gavrilo showed that \(\text{Pol} H \) is a maximal class in \(K_{\aleph_\nu} \). The proof is based on a lemma asserting that for any \(f \in H \) and \(\Delta \in T \) there exists \(\Delta' \in T \), \(\Delta' \subseteq \Delta \), such that \(f \mid \Delta' \) depends on at most one variable. Unfortunately the proof fails for \(\nu > 0 \); and in fact we prove the following result, assuming the continuum hypothesis (CH).

Proposition 5.1 (CH). For \(\nu = 1 \), \(H \) is not a basic Menger algebra.

Proof. In view of Corollary 2.6 and Lemma 2.7, it will be sufficient to establish the existence of \(h_0, h_1, h_2 \in H \) such that \(h_0 h_1 h_2 \notin H \), and this is an
immediate consequence of the lemmas below: with the notation of both lemmas, take \(h_1 = e^2 k \), \(h_2 = e^2 k \), and take as \(h_0: A^2 \to A \) any function injective on the set \(S \) and constant on \(A^2 \setminus S \).

Lemma 5.2. There exists a subset \(S \) of \(A^2 \) that has \(\aleph_1 \) elements in each row and each column of \(A^2 \), but contains no set \(B_1 \times B_2 \) with \(|B_1| = |B_2| = 2 \).

Proof. Let \(\langle \alpha \rangle_{\alpha < \omega_1} \) be a sequence in which each element of \(A \) appears \(\aleph_1 \) times, and let \(S \) consist of all elements \((\alpha, \lambda) \) and \((\lambda, \alpha) \) with \(\lambda < \alpha \); evidently \(S \) has \(\aleph_1 \) elements in each row and each column of \(A^2 \). Now we show that if \(\alpha_1 < \alpha_2 < \omega_1 \) and \(\beta_1 < \beta_2 < \omega_1 \) then not all of the elements \((\alpha_i, \beta_j) \) can belong to \(S \). If \(\alpha_2 < \beta_2 \), then neither of the elements \((\alpha_1, \beta_2), (\alpha_2, \beta_2) \) can be of the form \((\theta, \lambda) \) with \(\lambda < \theta \), and of course at most one of them is the element \((\lambda, \beta_2) \), so they do not both belong to \(S \). The case \(\alpha_2 > \beta_2 \) can be treated in a similar way and the lemma is proved.

Lemma 5.3 (CH). If \(S \subseteq A^2 \) has \(\aleph_1 \) elements in each row and each column, then there exists an injection \(k: A^2 \to S \) such that \(e^2 k, e^2 k \in H \).

Proof. With each (lower or upper) triangle \(\Delta \in T \) associate the set \(\delta \) consisting of the elements in the first \(\omega_0 \) rows and first \(\omega_0 \) columns of \(\Delta \), and call it the (lower or upper) starter of \(\Delta \); let \(T^* \) denote the set of all starters. Each starter being countable, we have \(|T^*| \leq \aleph_0 = \aleph_1 \), assuming CH, and thus we can list the elements of \(T^* \) as \(\langle \delta \rangle_{\delta < \omega_1} \).

For any \(\theta < \omega_1 \), let

\[
C_\theta = \{(x, y): \max(x, y) = \theta\} \quad \text{and} \quad D_\theta = \bigcup \{C_\psi: \psi < \theta\}.
\]

Let \(\theta_0 \) be the least ordinal such that there are infinitely many lower and infinitely many upper starters \(\delta_\theta \subseteq D_{\theta_0} \) with \(\theta < \theta_0 \). First, define \(k|D_{\theta_0} \) in an arbitrary way as an injection into \(S \). Since the sets \(C_\theta, \theta_0 \leq \theta < \omega_1 \), are disjoint and their union is \(A^2 \setminus D_{\theta_0} \), it will now be sufficient to define \(k|C_\theta \) by transfinite induction on \(\theta \) for \(\theta_0 \leq \theta < \omega_1 \).

Suppose, then, that \(\theta_0 \leq \theta < \omega_1 \) and that \(k: D_\theta \to S \) has already been defined and is injective. There are \(\aleph_0 \) lower respectively upper starters \(\delta_\theta \subseteq D_\theta \) with \(\theta < \theta_0 \); list them as

\[
\langle \delta_\theta(2m) \rangle_{m < \omega_0} \quad \text{respectively} \quad \langle \delta_\theta(2m+1) \rangle_{m < \omega_0}.
\]

Define elements \((x_\theta(n), y_\theta(n)) \in C_\theta \), together with the corresponding values of \(k \), by induction on \(n \) as follows.

If \(n = 4m \) or \(4m+1 \), we set \(x_\theta(n) = \theta \); define \(y_\theta(n) \) to be the least ordinal in the set \(e^2 \{\delta_\theta(2m)\} \setminus \{y_\theta(\mu): \mu < n\} \), and choose \(\xi_\theta(n) \) so that \((\xi_\theta(n), y_\theta(n)) \in \delta_\theta(2m) \). For \(n = 4m \) respectively \(4m+1 \), we select as \(kx_\theta(n) y_\theta(n) \) any value of the form

\[
(e^2 k \xi_\theta(n) y_\theta(n), q) \quad \text{respectively} \quad (p, e^2 k \xi_\theta(n) y_\theta(n))
\]
in the set

\[(S \setminus k [D_\theta]) \setminus \{|k x_\theta(\mu) y_\theta(\mu): \mu < n\};\]

such an element exists because \(S \) has \(\aleph_1 \) elements in each row and each column.

Similarly, if \(n = 4m + 2 \) or \(4m + 3 \), we set \(y_\theta(n) = \theta \), define \(x_\theta(n) \) to be the least ordinal in the set \(e_2^2 [\delta_\theta(2m + 1)] \setminus \{|x_\theta(\mu): \mu < n\} \), and choose \(\eta_\theta(n) \) so that \((x_\theta(n), \eta_\theta(n)) \in \delta_\theta(2m + 1) \). For \(n = 4m + 2 \) respectively \(4m + 3 \), we select as \(k x_\theta(n) y_\theta(n) \) any value of the form

\[(e_1^2 k x_\theta(n) \eta_\theta(n), q) \quad \text{respectively} \quad (p, e_2^2 k x_\theta(n) \eta_\theta(n))\]

in the set (3).

Clearly, as now defined on \(D_\theta \cup \{(x_\theta(n), y_\theta(n)): n < \omega_0\} \), \(k \) is injective. Finally, on \(C_\theta \setminus \{(x_\theta(n), y_\theta(n)): n < \omega_0\} \) we assign to \(k \) arbitrary values in \(S \) subject to the requirement that \(k|_{(D_\theta \cup C_\theta)} \) be injective; this is possible because \(|S| = \aleph_1\).

The inductive definition of \(k \) on \(A^2 \) is now complete, and it remains only to show that \(e_1^2 k \) and \(e_2^2 k \) belong to \(H \). Consider for example the former, and let \(T \) be (for example) a lower triangle \(\{(b_\lambda, c_\mu): \mu \leq \lambda < \omega_1\} \), with starter \(\delta_\theta \). Choose \(\lambda_0 \geq \omega_0 \) so large that \(b_{\lambda_0} > 0 \) and \(b_{\lambda_0} \geq \theta_0 \). It will be sufficient to show that \(e_1^2 k \) is not injective on the subset \(U = \delta_\theta \cup \{(b_{\lambda_0}, c_\mu): \mu < \omega_0\} \) of \(T \). Write \(\theta \) for \(b_{\lambda_0} \), and let \(\delta_\theta \) be listed as \(\delta_\theta(2m) \). Then by the construction of \(k \), we see that \(e_1^2 k \theta y_\theta(n) = e_1^2 k \xi_\theta(n) y_\theta(n) \); since \((\theta, y_\theta(n))\) and \((\xi_\theta(n), y_\theta(n))\) are distinct elements of \(U \), our assertion is proved. \(\square \)

REFERENCES

[26] --, The set of maximal closed classes of operations on an infinite set A has cardinality $2^{2^{14}}$, Archiv der Mathematik (Basel), 27 (1976), p. 561–568.

THE UNIVERSITY
LEICESTER, UNITED KINGDOM

CENTRE DE RECHERCHE DE MATHÉMATIQUES APPLIQUÉES
UNIVERSITÉ DE MONTRÉAL
MONTRÉAL, CANADA

Reçu par la Rédaction le 15.03.1981