ON THE RELATION
BETWEEN CONTINUOUS AND CONNECTED FUNCTIONS*

BY
A. K. STEINER (AMES, IOWA)

A real-valued function f defined on a topological space X is said to be a connected function if it maps every connected set in its domain onto a connected set. If X is an interval of real numbers, a connected function is called a Darboux function. Darboux functions have been extensively studied and a lengthy bibliography appears in Bruckner and Ceder [3].

Since every continuous real-valued function defined on an interval is a Darboux function, the question naturally arises as to when Darboux functions are continuous. It was Darboux himself who demonstrated that Darboux functions are not necessarily continuous [4]. Gillespie [6] proved that if f is Darboux and $\text{int}\{y:f^{-1}(y)\text{ is infinite}\} = \emptyset$, then f is continuous. However, the converse of this statement is not true. A corollary (proved by Tricomi [12] and Jacobsthal [8]) is that a one-to-one Darboux function is continuous and monotonic. A necessary and sufficient condition that a Darboux function f is continuous is that $f^{-1}(y)$ is closed for each $y \in f(X)$ [2].

Darboux functions have been generalized by changing conditions on the domain X or on the range Y or by requiring that $f(B)$ be a connected subset of Y for $B \in \mathcal{B}$ where \mathcal{B} is a certain class of connected subsets of X (see [2], [5], [7], [9], [10], and [11]). The condition that $f^{-1}(y)$ is closed for each $y \in f(X)$ is no longer a sufficient condition that a generalized Darboux function is continuous [2].

Lipiński [9], in attempting to give necessary and sufficient conditions for a connected function to be continuous made the following definition. A real-valued function f defined on a topological space X is said to satisfy property (G) if $f^{-1}(s)$ is closed for each $s \in S$, where S is dense in the real number line. Under the hypothesis that X is locally connected, Lipiński proved that f is continuous if and only if f is connected and satisfies pro-

* Research supported by the National Science Foundation, Grant GP 6529.
property (G) Since the hypothesis of the local connectivity of X was essential in his proof, he posed the problem: if every connected function on X which satisfies property (G) is continuous, is X locally connected ([9], P 639)?

The purpose of this paper is to give a negative answer to Lipiński's question and to provide additional conditions on X so that the question can be answered affirmatively.

Throughout, X will denote a topological space and R will denote the set of real numbers with the usual topology.

If X is a connected denumerable space and if f is any connected function on X, then f is a constant and is thus continuous. If we can find a connected, non-locally connected denumerable space, we will have an example of a space where every connected function is continuous (and hence satisfies property (G)), but which is not locally connected. Such an example of a denumerable connected Hausdorff space is due to Bing [1]. It is easy to see this space is not locally connected.

Similar examples exist in spaces of higher cardinal. For instance, let X be the set of real numbers with the topology generated by the open intervals of R and the set $X = \{1/n : n = 1, 2, \ldots \}$. X is Hausdorff and every connected function satisfying property (G) is continuous, but X is not locally connected.

If, however, we assume that X is a completely regular space (not necessarily T_{1}), then we have the following

Theorem. If X is a completely regular space, then X is locally connected if and only if every connected function on X satisfying property (G) is continuous.

Proof. Let X be a completely regular space. If X is locally connected, then every connected function satisfying property (G) is continuous (Lipiński [9]).

Conversely, assume X is not locally connected. Then there is an open set $U \subset X$ and a component D of U such that D is not an open subset of U. Let $y \in D \cap \text{cl}_X (U-D)$. Since X is a completely regular space, there is a continuous function f on X to $[0,1] \subset R$ such that $f(x) = 1$ for $x \in X-U$ and $Z(f) = \{x \in X : f(x) = 0\}$ is a neighborhood of y. Also, there is a continuous function g_0 on D to $[0,1] \subset R$ such that $g_0(y) = 1$ and $g_0(x) = 0$ for $x \in D - \text{int}_D Z(f)$. Let g be an extension (not necessarily continuous) of g_0 to X defined by $g(x) = g_0(x)$ for $x \in D$ and $g(x) = 0$ for $x \in X-D$. Then, the function $h = f + g$ is connected and satisfies property (G) but is not continuous.

To see that h is not continuous, let $\{x_\alpha\}$ be a net in $(U-D) \cap Z(f)$ that converges to y. Then $h(x_\alpha) = 0$ for all α but $h(y) = 1$.

For each $s \in S = R - \{0\}$, $h^{-1}(s) = f^{-1}(s) \cup g^{-1}(s)$ and both $f^{-1}(s)$ and $g^{-1}(s)$ are closed in X so h satisfies property (G).
If E is a connected subset of X and $E \cap D \cap Z(f) = \emptyset$, then $h[E] = f[E]$, which is connected. If $E \cap D \cap Z(f) \neq \emptyset$ and $E \subset U$, then $h[E] = (f|D+g_0)[E]$, which is connected. If $E \cap D \cap Z(f) \neq \emptyset$ and $E \cap X - U \neq \emptyset$, then for any real number r, $0 < r < 1$, there is an $x \in E$ such that $f(x) = r$ (and thus $g(x) = 0$) and again $h[E]$ is connected.

Simple examples show that strengthening property (G) to the condition that $f^{-1}(r)$ is closed for all $r \in \mathbb{R}$ still is not sufficient for a connected function to be continuous in a non locally connected, completely regular space.

REFERENCES

IOWA STATE UNIVERSITY

Reçu par la Rédaction le 17. 1. 1969