REMARKS ON STABILITY AND SATURATED MODELS

BY

J. WIERZEJEWSKI (WROCŁAW)

In this note we give a description of consequences of stability for the existence of saturated models. In [5] Shelah gave a characterization of those cardinals in which an unstable theory T has saturated models. Our theorems complete this characterization in the case where stability is assumed.

We use the standard notation as in [3]. If κ is an ordinal number, then

$$\mathcal{A} = \{f: f \text{ is a function}, \text{dom}(f) \in \kappa \text{ and } \text{ran}(f) \subseteq \mathcal{A}\}.$$

T always denotes a countable complete first-order theory with equality in a language L, having an infinite model. Without loss of generality we may assume that T has an elimination of quantifiers (see [1]).

Let \mathcal{A} be a model of T and $C \subseteq A$; p is a type over C if p is a set of formulas of the language of $\text{Th}(\mathcal{A}, c)_{c \in C}$ such that, for every formula $\varphi \in p$,

$$\text{Fr}(\varphi) \subseteq \{x_0\}$$

and, for every finite $q \subseteq p$,

$$\langle \mathcal{A}, c \rangle_{c \in C} \models \exists x_0 \wedge \varphi.$$

A type p is called a φ-type, where φ is a formula of L, if, for every $\psi \in p$, ψ is one of the forms $\varphi(x_0, c)$ or $\neg \varphi(x_0, c)$. The maximal φ-type included in p is denoted by $p[\varphi]$. A type p over C is complete if, for every formula φ of the language of $\text{Th}(\mathcal{A}, c)_{c \in C}$ with at most x_0 free, either $\varphi \in p$ or $\neg \varphi \in p$. Similarly for φ-types, $S(C)\langle S_{\varphi}(C) \rangle$ denotes the set of all complete types (φ-types) over C. A type p over C is realized in \mathcal{A} if there exists $a \in A$ such that, for every $\varphi \in p$, we have $\langle \mathcal{A}, c \rangle_{c \in C} \models \varphi[a]$. Let κ be an infinite cardinal number. A model \mathcal{A} of T is κ-saturated whenever, for every $C \subseteq A$ and $p \in S(C)$, if $|C| < \kappa$, then p is realized in \mathcal{A}. A model \mathcal{A} is saturated if it is $|A|$-saturated. T is κ-stable if $|S(A)| < \kappa$ for every $\mathcal{A} \in \text{Mod}(T)$ such that $|\mathcal{A}| < \kappa$. T is stable if it is κ-stable for some $\kappa \geq \omega$.
T is superstable if it is κ-stable for every $\kappa \geq 2^\omega$. T is unstable if it is not stable. Let $\mathfrak{A} \in \text{Mod}(T)$ and $C \subseteq A$. $I \subseteq A$ is a set of indiscernibles in \mathfrak{A} over C if, for every formula φ of the language of $\text{Th}(\mathfrak{A}, e)_{CcC}$ and for every $i_1, \ldots, i_n, i'_1, \ldots, i'_n \in I$ such that $i_k \neq i'_i$, $i'_k \neq i'_i$ for $k \neq l$ ($n \geq |\text{Fr}(\varphi)|$), the following holds:

$$(\mathfrak{A}, c)_{CcC} \models \varphi[i_1, \ldots, i_n] \leftrightarrow \varphi[i'_1, \ldots, i'_n].$$

Lemma 1. Let T be stable but not superstable, and κ an infinite cardinal number. Then there exist formulas $\{\varphi_n(x, \bar{y}_n): 0 < n < \omega\}$, a structure $\mathfrak{A} \in \text{Mod}(T)$ with $|A| = \kappa$ and sequences $\{\bar{a}_n: \tau \in ^\omega \kappa\}$, $\bar{a}_\tau \in ^\omega A$, such that

(i) for every $\eta \in ^\omega \kappa$

$$p_\eta = \{\varphi_n(x, \bar{a}_{\eta|n}): 0 < n < \omega\}$$

is consistent,

(ii) for every $\tau \in ^\omega \kappa$ and every $\xi_0 < \xi_1 < \kappa$,

$$\mathfrak{A} \models \neg \exists x(\varphi_n(x, \bar{a}_\tau \cdot \xi_0) \land \varphi_n(x, \bar{a}_\tau \cdot \xi_1)),$$

where $n = \text{lh}(\tau) + 1$.

The proof follows by 6.10 of [6], Compactness Theorem and Downward Skolem-Löwenheim Theorem.

Lemma 2. Let T be stable. If T has a saturated model of power κ for some κ such that $\omega < \kappa < 2^\omega$, then T is superstable.

Proof. Suppose T is not superstable. Let \mathfrak{B} be a saturated model of T of power κ and let \mathfrak{A} be as in Lemma 1. By [2] we may assume $\mathfrak{A} \prec \mathfrak{B}$. Then, for every $\eta \in ^\omega \kappa$, p_η is realized in \mathfrak{B} by a $c_\eta \in B$, and if $\eta_0, \eta_1 \in ^\omega \kappa$, $\eta_0 \neq \eta_1$, then $c_{\eta_0} \neq c_{\eta_1}$. Hence

$$|B| \geq |\{c_\eta: \eta \in ^\omega \kappa\}| = 2^\omega > \kappa$$

and we get a contradiction.

The following theorem was stated in [6]. As far as we know the proof was never published.

Theorem 1. Let λ be an infinite cardinal number. If T is λ-stable, then it has a saturated model of power λ.

Proof. We consider three cases.

Case 1. $\lambda = \text{cf}(\lambda)$. The proof can be found in [1].

Case 2. $\omega < \text{cf}(\lambda) < \lambda$.

Let \mathfrak{B}^* denote an elementary extension of \mathfrak{B} of minimal cardinality and such that, for every $p \in S(B)$, p is realized in \mathfrak{B}^*. Define, for every ordinal number α and structure \mathfrak{B}, a sequence of structures $\mathfrak{B}^{(\alpha)}$ in the following way:

$$\mathfrak{B}^{(0)} = \mathfrak{B}, \quad \mathfrak{B}^{(\alpha + 1)} = (\mathfrak{B}^{(\alpha)})^*,$$

$$\mathfrak{B}^{(\alpha)} = \bigcup \{\mathfrak{B}^{(\xi)}: \xi < \alpha\} \quad \text{for limit } \alpha.$$
Let \mathfrak{U} be a model of T of cardinality at most λ. We define a sequence of structures in the following way:

$$\mathfrak{U}_0 = \mathfrak{U}, \quad \mathfrak{U}_{\xi+1} = \mathfrak{U}_{\xi}^{(\xi+\omega]^+)} \text{ for } \xi < \lambda,$$

$$\mathfrak{U}_\sigma = \bigcup \{\mathfrak{U}_\xi : \xi < \sigma\} \text{ for limit } \sigma \leq \lambda, \quad \mathfrak{U}_{\lambda+1} = \mathfrak{U}_{\lambda}^{(\lambda^+)}.$$

It is easy to check that

(a1) $\{\mathfrak{U}_\xi : \xi \leq \lambda+1\}$ forms an elementary continuous chain of models of T.

(a2) If $\xi \leq \lambda$, then $|A_\xi| \leq \lambda$ (by λ-stability of T and the cardinality assumption on \mathfrak{U}).

(a3) If $\xi < \lambda$, then $\mathfrak{U}_{\xi+1}$ is $|\xi + \omega|^+$-saturated.

(a4) $\mathfrak{U}_{\lambda+1}$ is λ^+-saturated.

CLAIM. \mathfrak{U}_λ is a saturated model of power λ.

Of course, $|A_\lambda| = \lambda$. Suppose $B \subseteq A_\lambda$, $|B| = \kappa < \lambda$, $p \in S(B)$, $q \in S(A_\lambda)$, and $q \supseteq p$. By 2.5, 2.9 and 2.13 of [6], for every formula $\varphi(x, y)$ of L, $\text{Rank}_\varphi(q|\varphi) < \infty$ and there is a finite $q_\varphi \subseteq q|\varphi$ such that $\text{Rank}_\varphi(q|\varphi) = \text{Rank}_\varphi(q_\varphi)$ (for definitions see [4] and [6]). Let

$$\bar{q} = \bigcup \{q_\varphi : \varphi \text{ is a formula of } L\}.$$

By the countability of T and the assumption $\text{cf}(\lambda) > \omega$, we may suppose that \bar{q} is a type over some countable $C \subseteq A_\lambda$. By 3.4 of [6], there exists $q_{2\lambda} \in S(A_{2\lambda+1})$ such that $q_{2\lambda} \supseteq q$ and, for every formula φ of L,

$$\text{Rank}_\varphi(q_{2\lambda}|\varphi) = \text{Rank}_\varphi(q|\varphi).$$

Now we define by induction sequences $\{q_\xi : \xi < 2\lambda\}$ and $\{c_\xi : \xi < 2\lambda\}$ such that

(b1) $\xi \leq \eta < 2\lambda \rightarrow q_\xi \subseteq q_\eta$, $\xi < \lambda \rightarrow q_\xi \subseteq q_\xi$ and $\xi < 2\lambda \rightarrow q_\xi \subseteq q_{2\lambda}$;

(b2) $\eta < 2\lambda \rightarrow q_\eta \in S(C \cup \{c_\xi : \xi < \eta\})$;

(b3) $\xi < \lambda \rightarrow c_\xi \in A_{\xi+1}$ and $\lambda < \xi < 2\lambda \rightarrow c_\xi \in A_{\lambda+1}$;

(b4) $\xi < 2\lambda \rightarrow c_\xi$ realizes q_ξ, and $\lambda < \xi < 2\lambda \rightarrow c_\xi$ realizes q (hence also p).

Let $q_0 = \bar{q}$. By the construction of \bar{q} and (a3), there exists $a \in A_\lambda$ which realizes \bar{q}. Take $c_0 = a$. Suppose that $\{q_\xi : \xi < \eta < \lambda\}$ and $\{c_\xi : \xi < \eta < \lambda\}$ have been defined. Then take

$$q_\eta = \{\varphi \in q : \varphi \text{ contains only constants from } C \cup \{c_\xi : \xi < \eta\}\}.$$

Of course, (b1) and (b2) hold. By (a3), there exists $b \in A_{\eta+1}$ which realizes q_η. Put $c_\eta = b$. Then (b3) and (b4) hold. Let $q_1 = \bigcup \{q_\xi : \xi < \lambda\}$. By (a4), there exists $c_\xi \in A_{\lambda+1}$ which realizes q (hence also q_1). We complete the construction of these sequences, similarly as above, taking care of (b1)-(b4) ($q_\xi \cup q \subseteq q_{2\lambda}$, so it is a type and, by (a4), can be realized in $\mathfrak{U}_{\lambda+1}$).
In view of the choice of \tilde{q} and q_2, we conclude, by (b1) and 2.5 of [6], that, for every formula φ of L and every $\xi \leq 2\lambda$,

$$\text{Rank}_p(q_0|\varphi) = \text{Rank}_p(q_\xi|\varphi).$$

So, by 5.7 of [6], $I = \{c_\xi : \xi < 2\lambda\}$ is a set of indiscernibles in \mathfrak{A}_{k+1} over C. By 6.13 of [6], there exists $I_0 \subseteq I$ such that $|I_0| = \kappa = |B|$ and $I \setminus I_0$ is a set of indiscernibles in \mathfrak{A}_{k+1} over B. Then

$$J_1 = \{c_\xi : \lambda \leq \xi < 2\lambda\} \cap (I \setminus I_0) \neq 0, \quad J_2 = (I \setminus I_0) \cap A_\lambda \neq 0.$$

By (b4), there is $d_1 \in J_1$ which realizes q, and hence also p. Since p is a type over B, there exists $d_2 \in J_2$ which realizes p.

Case 3. $\omega = \text{cf}(\lambda) < \lambda$.

In this case $\lambda^\omega > \lambda$, and hence, by 6.10 of [6], T is superstable. We proceed similarly as in Case 2, but using the degree of type (see Section 6 of [6]) instead of rank.

Remark. By exactly the same method we can prove the following theorem (stated without proof in [6]):

Let T be stable and let λ be an infinite cardinal number such that $\text{cf}(\lambda) > \omega$. Suppose that $\{\mathfrak{A}_\xi : \xi < \lambda\}$ is an elementary increasing chain of models of T, in which every \mathfrak{A}_ξ is κ-saturated. Then $\mathfrak{A} = \bigcup \{\mathfrak{A}_\xi : \xi < \lambda\}$ is κ-saturated. Moreover, if T is superstable, we can eliminate the assumption $\text{cf}(\lambda) > \omega$.

We note the well-known fact: A countable Boolean algebra has ω or 2^ω ultrafilters.

Corollary 1. If T has a saturated model of power ω_1, then either T is ω-stable or $2^\omega = \omega_1$.

Theorem 2. Let T be stable and let $\kappa > \omega$. Then T is κ-stable iff T has a saturated model of power κ.

Proof. The necessity follows by Theorem 1.

Sufficiency. Case 1. T is ω-stable.

In this case T is κ-stable by 2.7 of [1].

Case 2. T is superstable but not ω-stable.

If $\kappa \geq 2^\omega$, then, of course, T is κ-stable. Let $\omega < \kappa < 2^\omega$ and let \mathfrak{B} be a saturated (and hence, by [2], universal) model of T of power κ. Let $\mathfrak{A} < \mathfrak{B}$ and $|S(A)| > \omega = |A|$. By the above-mentioned fact, $|S(A)| = 2^\omega$, and hence $\kappa = |B| \geq 2^\omega$. We get a contradiction.

Case 3. T is stable but not superstable.

By Lemma 2, $\kappa^\omega = \kappa$ and, by 2.13 of [6], T is κ-stable.

As a corollary we obtain a natural characterization of theories having saturated model for every uncountable power.

Corollary 2. (i) T has a saturated model for every uncountable power iff T is κ-stable for every $\kappa > \omega$.
(ii) T has a saturated model for every power $\kappa \geq 2^n$ iff T is superstable.

The proof follows by Theorems 1 and 2 and by the following result of Shelah [5]: Let T be unstable and let $\kappa > \omega$. Then T has a saturated model of power κ iff

$$\kappa = \sum_{i < n} \kappa^i.$$

The next proposition shows that we cannot generalize this characterization for $\kappa \geq \omega$.

Proposition. (i) There is a superstable theory T_1 which is not ω-stable but has a countable saturated model.

(ii) There is a superstable theory T_2 which has not a countable saturated model.

Proof. We shall describe the examples, but shall not prove the required properties.

(i) Let $\mathcal{A} = \langle \omega \setminus \{0\}, R_p \rangle_{p \in P}$, where P is the set of all prime natural numbers, and R_p are binary relations defined in the following way:

$$n R_p m \text{ iff } \forall r \leq p \ (r \in P \rightarrow (p \text{ divides } n \leftrightarrow p \text{ divides } m)).$$

$T_1 = \text{Th}(\mathcal{A})$ satisfies (i).

(ii) Let $\mathcal{B}_1 = \langle \omega^2, R_i \rangle_{i \in \omega}$, where R_i are unary relations defined in the following way: $R_i(f)$ iff $f(i) = 0$. Thus $T_2 = \text{Th}(\mathcal{B}_1)$ satisfies (ii).

Remark. If in the definition of κ-stable theories we admit also finite cardinals (i.e., if we say T is κ-stable whenever, for every $\mathcal{A} \in \text{Mod}(T)$ and every $C \subseteq A$ such that $|C| \leq \kappa$, we have $|S(C)| \leq \kappa + \omega$), we get a somewhat artificial characterization:

T has a saturated model for every infinite power iff T is κ-stable for all $\kappa \neq \omega$.

REFERENCES

INSTITUTE OF MATHEMATICS
OF THE POLISH ACADEMY OF SCIENCES
WROCŁAW

Reçu par la Rédaction le 1. 3. 1974