

EDGE MAXIMAL \(C_{2k+1} \)-EDGE DISJOINT FREE GRAPHS

M.S.A. Bataineh
Department of Mathematics
Yarmouk University
Irbid-Jordan

E-mail: bataineh71@hotmail.com

AND

M.M.M. Jaradat
Yarmouk University
Department of Mathematics
Irbid-Jordan

Department of Mathematics, Physics and Statistics
Qatar University
Doha-Qatar

E-mail: mmjst4@yu.edu.jo; mmjst4@qu.edu.qa

Abstract

For two positive integers \(r \) and \(s \), \(G(n;r,s) \) denotes the class of graphs on \(n \) vertices containing no \(r \) of \(s \)-edge disjoint cycles and \(f(n;r,s) = \max\{\varepsilon(G) : G \in G(n;r,s)\} \). In this paper, for integers \(r \geq 2 \) and \(k \geq 1 \), we determine \(f(n;r,2k+1) \) and characterize the edge maximal members in \(G(n;r,2k+1) \).

Keywords: extremal graphs, edge disjoint, cycles.

2010 Mathematics Subject Classification: 05C38, 05C35.

1. Introduction

The graphs considered in this paper are finite, undirected and have no loops or multiple edges. Most of the notations that follow can be found in [5]. For a given graph \(G \), we denote the vertex set of a graph \(G \) by \(V(G) \) and the edge set by \(E(G) \). The cardinalities of these sets are denoted by \(\nu(G) \) and \(\varepsilon(G) \), respectively. The cycle on \(n \) vertices is denoted by \(C_n \).
Let G_1 and G_2 be graphs. The union of G_1 and G_2 is a graph with vertex set $V(G_1) \cup V(G_2)$ and edge set $E(G_1) \cup E(G_2)$. Two graphs G_1 and G_2 are vertex disjoint if and only if $V(G_1) \cap V(G_2) = \emptyset$; G_1 and G_2 are edge disjoint if $E(G_1) \cap E(G_2) = \emptyset$. If G_1 and G_2 are vertex disjoint, we denote their union by $G_1 + G_2$. The intersection $G_1 \cap G_2$ of graphs G_1 and G_2 is defined similarly, but in this case we need to assume that $V(G_1) \cap V(G_2) \neq \emptyset$. The join $G_1 \vee H$ of two vertex disjoint graphs G_1 and H is the graph obtained from $G_1 + H$ by joining each vertex of G_1 to each vertex of H. For two vertex disjoint subgraphs H_1 and H_2 of G, we let $E_G(H_1, H_2) = \{xy \in E(G) : x \in V(H_1), y \in V(H_2)\}$ and $E_G(H_1, H_2) = |E_G(H_1, H_2)|$.

In this paper we consider the Turán-type extremal problem with the odd edge disjoint cycles being the forbidden subgraph. Since a bipartite graph contains no odd cycles, the non-bipartite graphs have been considered by some authors. First, we recall some notations and terminologies. For a positive integer n and a set of graphs \mathcal{F}, let $G(n; \mathcal{F})$ denote the class of non-bipartite \mathcal{F}-free graphs on n vertices, and

$$f(n; \mathcal{F}) = \max\{\mathcal{E}(G) : G \in G(n; \mathcal{F})\}.$$

For simplicity, in the case when \mathcal{F} consists only of one member C_s, where s is an odd integer, we write $G(n; s) = G(n; \mathcal{F})$ and $f(n; s) = f(n; \mathcal{F})$.

An important problem in extremal graph theory is that of determining the values of the function $f(n; \mathcal{F})$. Further, characterize the extremal graphs $G(n; \mathcal{F})$ where $f(n; \mathcal{F})$ is attained. For a given r, the edge maximal graphs of $G(n; r)$ have been studied by a number of authors [1, 2, 3, 7, 8, 9, 10, 12]. In 1998, Jia [11] proved the following result:

Theorem 1 (Jia). Let $G \in G(n; 5)$, $n \geq 10$. Then $\mathcal{E}(G) \leq \lfloor (n-2)^2/4 \rfloor + 3$. Furthermore, equality holds if and only if $G \in G^*(n)$ where $G^*(n)$ is the class of graphs obtained by adding a triangle, two vertices of which are new, to the complete bipartite graph $K_{\lfloor (n-2)/2 \rfloor, \lceil (n-2)/2 \rceil}$. Figure 1(a) displays a member of $G^*(n)$.

![Figure 1](image-url)
Jia, also conjectured that \(f(n; 2k + 1) \leq \lfloor (n - 2)^2/4 \rfloor + 3 \) for all \(n \geq 4k + 2 \). In 2007, Bataineh, confirmed positively the conjecture. In fact, he proved the following result:

Theorem 2 (Bataineh). Let \(k \geq 3 \) be a positive integer and \(G \in \mathcal{G}(n; 2k + 1) \). Then for large \(n \), \(E(G) \leq \lfloor (n - 2)^2/4 \rfloor + 3 \).

Furthermore, equality holds if and only if \(G \in \mathcal{G}^*(n) \) where \(\mathcal{G}^*(n) \) is as above.

Let \(\mathcal{G}(n; r, s) \) denote to the class of graphs on \(n \) vertices containing no \(r \) of \(s \)-edge disjoint cycles and

\[
 f(n; r, s) = \max \{ E(G) : G \in \mathcal{G}(n; r, s) \}.
\]

Note that

\[
 \mathcal{G}(n; 2, s) \subseteq \mathcal{G}(n; 3, s) \subseteq \cdots \subseteq \mathcal{G}(n; r, s).
\]

Let \(\Omega(n, r) \) denote to the class of graphs obtained by adding \(r - 1 \) edges to the complete bipartite graphs \(K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil} \). Figure 1(b) displays a member of \(\Omega(n, 2) \).

The Turán-type extremal problem with two odd edge disjoint cycles being the forbidden subgraph, was studied by Bataineh and Jaradat [2]. In fact, they only established partial results by proving the following:

Theorem 3 (Bataineh and Jaradat). Let \(k = 1, 2 \) and \(G \in \mathcal{G}(n; 2, 2k + 1) \). Then for large \(n \),

\[
 E(G) \leq \lfloor n^2/4 \rfloor + 1.
\]

Furthermore, equality holds if and only if \(G \in \Omega(n, 2) \).

In this paper, we continue the work initiated in [2] by generalizing and extending the above theorem. In fact, we determine \(f(n; r, 2k + 1) \) and characterize the edge maximal members in \(\mathcal{G}(n; r, 2k + 1) \). Now, we state a number of results, which play an important role in proving our result.

Lemma 4 (Bondy and Murty). Let \(G \) be a graph on \(n \) vertices. If \(E(G) > n^2/4 \), then \(G \) contains a cycle of length \(r \) for each \(3 \leq r \leq \lfloor (n + 3)/2 \rfloor \).

Theorem 5 (Brandt). Let \(G \) be a non-bipartite graph with \(n \) vertices and more than \(\lfloor (n - 1)^2/4 \rfloor + 1 \) edges. Then \(G \) contains all cycles of length between 3 and the length of the longest cycle.

In the rest of this paper, \(N_G(u) \) stands for the set of neighbors of \(u \) in the graph \(G \). Moreover, \(G[X] \) denotes to the subgraph induced by \(X \) in \(G \).
2. Edge-Maximal C_{2k+1}-edge Disjoint Free Graphs

In this section, we determine $f(n; r, 2k + 1)$ and characterize the edge maximal members in $\mathcal{G}(n; r, 2k + 1)$. Observe that $\Omega(n, r) \subseteq \mathcal{G}(n; r, 2k + 1)$ and every graph in $\Omega(n, r)$ contains $\lfloor n^2/4 \rfloor + r - 1$ edges. Thus, we have established that

\begin{equation}
 f(n; r, 2k + 1) \geq \lfloor n^2/4 \rfloor + r - 1.
\end{equation}

In the following work, we establish that equality holds. Further we characterize the edge maximal members in $\mathcal{G}(n; r, 2k + 1)$.

Theorem 6. Let $k \geq 1, r \geq 2$ be two positive integers and $G \in \mathcal{G}(n; r, 2k + 1)$. For large n,

\[\mathcal{E}(G) \leq \lfloor n^2/4 \rfloor + r - 1. \]

Furthermore, equality holds if and only if $G \in \Omega(n, r)$.

Proof. We prove the theorem using induction on r.

Step 1. We show the result for $r = 2$. Note that by Theorem 3, it is enough to prove the result for $k \geq 3$. Let $G \in \mathcal{G}(n, 2, 2k + 1)$. If G does not have a cycle of length $2k + 1$, then by Lemma 4, $\mathcal{E}(G) \leq \lfloor n^2/4 \rfloor$. Thus, $\mathcal{E}(G) < \lfloor n^2/4 \rfloor + 1$. So, we need to consider the case when G has cycles of length $2k + 1$. Assume $C = x_1 x_2 \ldots x_{2k+1} x_1$ be a cycle of length $2k + 1$ in G. Consider $H = G - \{e_1 = x_1 x_2, e_2 = x_2 x_3, \ldots, e_{2k+1} = x_{2k+1} x_1\}$. Observe that H cannot have $2k + 1$-cycle as otherwise G would have two edge disjoint $2k + 1$-cycles. We now consider two cases according to H:

Case 1. H is not a bipartite graph. If $k \geq 2$, then by Theorems 1 and 2

\[\mathcal{E}(H) \leq \lfloor (n - 2)^2/4 \rfloor + 3. \]

But, $\mathcal{E}(G) = \mathcal{E}(H) + 2k + 1 \leq \lfloor (n-2)^2/4 \rfloor + 2k + 4 \leq \lfloor n^2/4 \rfloor - n + 2k + 5$. Thus, for $n \geq 2k + 5$, we have $\mathcal{E}(G) < \lfloor n^2/4 \rfloor + 1$. If $k = 1$, then by Theorems 5 $\mathcal{E}(H) \leq \lfloor (n-1)^2/4 \rfloor + 1$. And so, by using the same argument as in the above, we get that for $n \geq 7$,

\[\mathcal{E}(G) < \lfloor n^2/4 \rfloor + 1. \]

Case 2. H is a bipartite graph. Let X and Y be the partition of $V(H)$. Thus, $\mathcal{E}(H) \leq |X||Y|$. Observe $|X| + |Y| = n$. The maximum of the above is when $|X| = \lfloor n/2 \rfloor$ and $|Y| = \lceil n/2 \rceil$. Thus, $\mathcal{E}(H) \leq \lfloor n^2/4 \rfloor$. Restore the edges of the cycle C. We now consider the following subcases:

(2.1). One of X and Y contains two edges of the cycle, say e_i and e_j belong to X. Let $y_1, y_2, \ldots, y_{k-1}$ be a set of vertices in $X - \{x_i, x_{i+1}, x_j, x_{j+1}\}$. We split this subcase into two subcases:
2.1.1. \(i \) and \(j \) are not consecutive. Then \(|N_G(x_i) \cap N_G(x_{i+1}) \cap N_G(x_j) \cap N_G(x_{j+1}) \cap N_G(y_1) \cap N_G(y_2) \cap \cdots \cap N_G(y_{k-1})| \leq k + 2\), as otherwise \(G \) contains two edge disjoint \(2k + 1 \)-cycles. Thus,

\[
\mathcal{E}_G(\{x_i, x_{i+1}, x_j, x_{j+1}, y_1, y_2, \ldots, y_{k-1}\}, Y) \leq (k + 2)|Y| + k + 2.
\]

So,

\[
\mathcal{E}(G) = \mathcal{E}_G(X - \{x_i, x_{i+1}, x_j, x_{j+1}, y_1, y_2, \ldots, y_{k-1}\}, Y) + \mathcal{E}_G(\{x_i, x_{i+1}, x_j, x_{j+1}, y_1, y_2, \ldots, y_{k-1}\}, Y) + \mathcal{E}(G[X]) + \mathcal{E}(G[Y])
\]

\[
\leq (|X| - k - 3)|Y| + (k + 2)|Y| + k + 2 + 2k + 1
\]

\[
\leq |X||Y| - |Y| + 3k + 3 \leq (|X| - 1)|Y| + 3k + 3.
\]

Observe that \(|X| + |Y| = n\). The maximum of the above equation is when \(|Y| = \left\lfloor \frac{n - 1}{2} \right\rfloor \) and \(|X| = 1 = \left\lfloor \frac{n - 1}{2} \right\rfloor \). Thus,

\[
\mathcal{E}(G) \leq \left\lfloor \frac{(n - 1)^2}{4} \right\rfloor + 3k + 3.
\]

Hence, for \(n \geq 6k + 7 \), we have \(\mathcal{E}(G) < \left\lfloor \frac{n^2}{4} \right\rfloor + 1 \).

2.1.2. \(i \) and \(j \) are consecutive, say \(j = i + 1 \). Then by following, word by word, the same arguments as in (2.1.1) and by taking into the account that \(|N_G(x_i) \cap N_G(x_{i+1}) \cap N_G(x_{j+2}) \cap N_G(y_1) \cap N_G(y_2) \cap \cdots \cap N_G(y_{k-1})| \leq k + 1\) and so \(\mathcal{E}(\{x_i, x_{i+1}, x_{i+2}, y_1, y_2, \ldots, y_{k-1}\}, Y) \leq (k + 1)|Y| + k + 1 \), we get the same inequality.

\[
(2.2). \quad \mathcal{E}(G[X]) = 1 \quad \text{and} \quad \mathcal{E}(G[Y]) = 0 \quad \text{or} \quad \mathcal{E}(G[X]) = 0 \quad \text{and} \quad \mathcal{E}(G[Y]) = 1,
\]

say \(e_1 \in E(G[X]) \). Then \(G - e_1 \) is a bipartite graph and so as in the above \(\mathcal{E}(G - e_1) \leq \left\lfloor \frac{n^2}{4} \right\rfloor \). Thus, \(\mathcal{E}(G) = \mathcal{E}(G - e_1) + 1 \leq \left\lfloor \frac{n^2}{4} \right\rfloor + 1 \).

One can observe from the above arguments that for \(r = 2 \) the only time we have equality is in case when \(G \) is obtained by adding an edge to the complete bipartite graph \(K_{\left\lfloor \frac{n}{2} \right\rfloor, \left\lceil \frac{n}{2} \right\rceil} \). This gives rise to the class \(\Omega(n, 2) \).

Step 2. Assume that the result is true for \(r - 1 \). We now show the result is true for \(r \geq 3 \). To accomplish that we use similar arguments to those in Step 1. Let \(G \in \mathcal{G}(n; r, 2k + 1) \). If \(G \) contains no \(r - 1 \) edge disjoint cycles of length \(2k + 1 \), then by the inductive step \(\mathcal{E}(G) \leq \left\lfloor \frac{n^2}{4} \right\rfloor + r - 2 \). Thus, \(\mathcal{E}(G) < \left\lfloor \frac{n^2}{4} \right\rfloor + r - 1 \).

So, we need to consider the case when \(G \) has \(r - 1 \) edge disjoint cycles of length \(2k + 1 \). Assume that \(\{C_i = x_{i1}, x_{i2}, \ldots, x_{i(2k+1)}, x_{i1}\}_{i=1}^{r-1} \) be the set of cycles of length \(2k + 1 \). Consider \(H = G - \cup_{i=1}^{r-1} E(C_i) \). Observe that \(H \) cannot have \(2k + 1 \)-cycles as otherwise \(G \) would have \(r \) of edges disjoint \(2k + 1 \)-cycles. As in Step 1, we consider two cases:
Case I. H is not a bipartite graph. If $k \geq 2$, then by Theorems 1 and 2 $\mathcal{E}(H) \leq \left\lfloor \frac{(n - 2)^2}{4} \right\rfloor + 3$. Thus, $\mathcal{E}(G) = \mathcal{E}(H) + (r - 1)(2k + 1) \leq \left\lfloor \frac{n^2}{4} \right\rfloor + (r - 1) - n + 4 + 2k(r - 1)$. Hence, for $n > 4 + 2k(r - 1)$, we have $\mathcal{E}(G) < \left\lceil \frac{n^2}{4} \right\rceil + r - 1$.

If $k = 1$, then by Theorems 5 $\mathcal{E}(H) \leq \left\lfloor \frac{(n - 1)^2}{4} \right\rfloor + 1$.

By using the same argument as in the above, we get that for $n \geq 4(r - 1) + 1$,

$$\mathcal{E}(G) < \left\lfloor \frac{n^2}{4} \right\rfloor + 1.$$

Case II. H is a bipartite graph. Let X and Y be the partition of $V(H)$. Thus, $\mathcal{E}(H) \leq |X||Y|$. Observe $|X| + |Y| = n$. The maximum of the above is when $|X| = \left\lceil \frac{n}{2} \right\rceil$ and $|Y| = \left\lfloor \frac{n}{2} \right\rfloor$. Thus, $\mathcal{E}(H) \leq \left\lceil \frac{n^2}{4} \right\rceil$. Now, we consider the following two subcases:

(II.I) There is $1 \leq m \leq r - 1$ such that C^m contains at least two edges, say $e_i = x_{mi}x_{m(i+1)}$ and $e_j = x_{mj}x_{m(j+1)}$, joining vertices of one of X and Y, say X. Let $y_1, y_2, \ldots, y_{k-1}$ be a set of vertices in $X - \{x_{mi}, x_{m(i+1)}, x_{mj}, x_{m(j+1)}\}$. To this end we have two subcases:

(II.I.1) i and j are not consecutive. Then $|N_Y(x_{mi}) \cap N_Y(x_{m(i+1)}) \cap N_Y(x_{mj}) \cap N_Y(x_{m(j+1)}) \cap N_Y(y_1) \cap N_Y(y_2) \cap \cdots \cap N_Y(y_{k-1})| \leq k+2$, as otherwise $H \cup \{e_i, e_j\}$ contains two edges disjoint $2k + 1$-cycles and so G contains r edge disjoint cycles of length $2k + 1$. Thus, as in (2.1.1) of Step 1,

$$\mathcal{E}_H\left(\{x_{mi}, x_{m(i+1)}, x_{mj}, x_{m(j+1)}, y_1, y_2, \ldots, y_{k-1}\}, Y\right) \leq (k + 2)|Y| + k + 2.$$ And so,

$$\mathcal{E}(G) = \mathcal{E}(H) + \left| \bigcup_{i=1}^{r-1} E(C^i) \right|$$

$$= \mathcal{E}_H\left(X - \{x_{mi}, x_{m(i+1)}, x_{mj}, x_{m(j+1)}, y_1, y_2, \ldots, y_{k-1}\}, Y \right) + \mathcal{E}_H\left(\{x_{mi}, x_{m(i+1)}, x_{mj}, x_{m(j+1)}, y_1, y_2, \ldots, y_{k-1}\}, Y \right) + \left| \bigcup_{i=1}^{r-1} E(C^i) \right|$$

$$\leq (|X| - k - 3)|Y| + (k + 2)|Y| + k + 2 + (r - 1)(2k + 1)$$

$$= (|X| - 1)|Y| + k + 2 + (r - 1)(2k + 1).$$

Moreover, the maximum of the above inequality is when $|Y| = \left\lceil \frac{n - 1}{2} \right\rceil$ and $|X| - 1 = \left\lceil \frac{n - 1}{2} \right\rceil$. Thus,

$$\mathcal{E}(G) \leq \left\lceil \frac{(n - 1)^2}{4} \right\rceil + k + 2 + (r - 1)(2k + 1).$$

Hence, for $n \geq 6k(r - 1) + 7$, we have $\mathcal{E}(G) < \left\lceil \frac{n^2}{4} \right\rceil + (r - 1)$.

276 M.S.A. Bataineh and M.M.M. Jaradat
i and j are consecutive, say \(j = i + 1 \). Then by following word by word the same arguments as in (2.1.2) of Step 1 and (II.1) of Step 2, we get the same inequality

\[E(G) < \left\lfloor \frac{n^2}{4} \right\rfloor + (r - 1). \]

(II.2). Each \(1 \leq m \leq r - 1 \), \(C^m \) has exactly one edge belonging to one of \(X \) and \(Y \). Let \(e \) be the edge of \(C^1 \) that belongs to one of \(X \) and \(Y \). Then \(G - e \in \mathcal{G}(n; r - 1, 2k + 1) \) and so by inductive step, \(E(G) = E(G - e) + 1 \leq \left\lfloor \frac{n^2}{4} \right\rfloor + r - 2 + 1 = \left\lfloor \frac{n^2}{4} \right\rfloor + r - 1. \)

We now characterize the extremal graphs. Throughout the proof, we notice that the only time we have equality is in case when \(G \) obtained by adding \(r - 1 \) edges to the complete bipartite graph \(K_{\left\lfloor \frac{n}{2} \right\rfloor, \left\lceil \frac{n}{2} \right\rceil} \). This gives rise to the class \(\Omega(n, r) \). This completes the proof of the theorem.

From Theorem 6 and the inequality (1), we get that for \(k \geq 1 \), \(r \geq 2 \) and large \(n \),

\[f(n; r, 2k + 1) = \left\lfloor \frac{n^2}{4} \right\rfloor + r - 1. \]

References

Received 27 August 2010
Revised 15 March 2011
Accepted 12 May 2011