BOUNDS ON THE GLOBAL OFFENSIVE k-ALLIANCE NUMBER IN GRAPHS

1Mustapha Chellali, 2Teresa W. Haynes
3Bert Randerath and 3Lutz Volkmann

1LAMDA-RO Laboratory, Department of Mathematics
University of Blida
B.P. 270, Blida, Algeria
e-mail: m.chellali@yahoo.com

2Department of Mathematics
East Tennessee State University
Johnson City, TN 37614 USA
e-mail: haynes@etsu.edu

3Lehrstuhl II für Mathematik
RWTH Aachen University
Templergraben 55, D–52056 Aachen, Germany
e-mail: randerath@informatik.uni-koeln.de
e-mail: volkm@math2.rwth-aachen.de

Abstract

Let $G = (V(G), E(G))$ be a graph, and let $k \geq 1$ be an integer. A set $S \subseteq V(G)$ is called a global offensive k-alliance if $|N(v) \cap S| \geq |N(v) - S| + k$ for every $v \in V(G) - S$, where $N(v)$ is the neighborhood of v. The global offensive k-alliance number $\gamma_o^k(G)$ is the minimum cardinality of a global offensive k-alliance in G. We present different bounds on $\gamma_o^k(G)$ in terms of order, maximum degree, independence number, chromatic number and minimum degree.

Keywords: global offensive k-alliance number, independence number, chromatic number.

2000 Mathematics Subject Classification: 05C69.
1. Terminology

Let $G = (V, E) = (V(G), E(G))$ be a finite and simple graph. The open neighborhood of a vertex $v \in V$ is $N_G(v) = N(v) = \{u \in V \mid uv \in E\}$ and the closed neighborhood is $N_G[v] = N[v] = N(v) \cup \{v\}$. The degree of v, denoted by $d_G(v)$, is $|N(v)|$. By $n(G) = n$, $\Delta(G) = \Delta$ and $\delta(G) = \delta$ we denote the order, the maximum degree and the minimum degree of the graph G, respectively. If $A \subseteq V(G)$, then $G[A]$ is the graph induced by the vertex set A. We denote by K_n the complete graph of order n, and by $K_{r,s}$ the complete bipartite graph with partite sets X and Y such that $|X| = r$ and $|Y| = s$. A set $D \subseteq V(G)$ is a k-dominating set of G if every vertex of $V(G) - D$ has at least $k \geq 1$ neighbors in D. The k-domination number $\gamma_k(G)$ is the cardinality of a minimum k-dominating set. The case $k = 1$ leads to the classical domination number $\gamma(G) = \gamma_1(G)$.

In [11], Kristiansen, Hedetniemi and Hedetniemi introduced several types of alliances in graphs, including defensive and offensive alliances. We are interested in a generalization of offensive alliances, namely global offensive k-alliances, given by Shaqque and Dutton [14, 15]. A set S of vertices of a graph G is called a global offensive k-alliance if $|N(v) \cap S| \geq |N(v) - S| + k$ for every $v \in V(G) - S$, where $k \geq 1$ is an integer. The global offensive k-alliance number $\gamma^k_0(G)$ is the minimum cardinality of a global offensive k-alliance in G. If S is a global k-offensive alliance of G and $|S| = \gamma^k_0(G)$, then we say that S is a $\gamma^k_0(G)$-set. A global offensive 1-alliance is a global offensive alliance and a global offensive 2-alliance is a global strong offensive alliance. In [7], Fernau, Rodríguez and Sigarreta show that the problem of finding optimal global offensive k-alliances is NP-complete.

If $k \geq 1$ is an integer, then let $L_k(G) = \{x \in V(G) : d_G(x) \leq k - 1\}$. Denote by $\alpha(G)$ the independence number, by $\chi(G)$ the chromatic number, and by $\omega(G)$ the clique number of G, respectively. The corona graph $G \circ K_1$ of a graph G is the graph constructed from a copy of G, where for each vertex $v \in V(G)$, a new vertex v' and a pendant edge vv' are added. Next assume that G_1 and G_2 are two graphs with disjoint vertex sets. The union $G = G_1 \cup G_2$ has $V(G) = V(G_1) \cup V(G_2)$ and $E(G) = E(G_1) \cup E(G_2)$ and the join $G = G_1 + G_2$ has $V(G) = V(G_1) \cup V(G_2)$ and

$$E(G) = E(G_1) \cup E(G_2) \cup \{uv : u \in V(G_1) \text{ and } v \in V(G_2)\}.$$
2. Upper Bounds

We begin this section by giving an upper bound on the global offensive k-alliance number for an r-partite graph G in terms of its order and $|L_k(G)|$.

Theorem 1. Let $k \geq 1$ be an integer. If G is an r-partite graph, then

$$
\gamma^k_o(G) \leq \frac{(r-1)n(G) + |L_k(G)|}{r}.
$$

Proof. Clearly, the set $L_k(G)$ is contained in every $\gamma^k_o(G)$-set. In the case that $|L_k(G)| = |V(G)|$, we are finished. In the remaining case that $|L_k(G)| < |V(G)|$, let V_1, V_2, \ldots, V_r be a partition of the r-partite graph $G - L_k(G)$ such that $|V_1| \geq |V_2| \geq \cdots \geq |V_r|$, where $V_i = \emptyset$ is possible for $i \geq 2$. Then every vertex of V_1 has degree at least k in G, and all its neighbors are in $V(G) - V_1$. Thus $V(G) - V_1$ is a global offensive k-alliance of G. Since

$$
|V_1| \geq \frac{|V_1| + |V_2| + \cdots + |V_r|}{r} = \frac{n(G) - |L_k(G)|}{r},
$$

we obtain

$$
\gamma^k_o(G) \leq n(G) - |V_1| \leq n(G) - \frac{n(G) - |L_k(G)|}{r} = \frac{(r-1)n(G) + |L_k(G)|}{r},
$$

and the proof is complete. ■

The case $k = r = 2$ in Theorem 1 leads to the next result.

Corollary 2 (Chellali [4]). If G is a bipartite graph, then

$$
\gamma^2_o(G) \leq \frac{n(G) + |L_2(G)|}{2}.
$$

Observation 3. If $k \geq 1$ is an integer, then $\gamma^k_o(G) \geq \gamma_k(G)$ for any graph G.

Proof. If S is any $\gamma^k_o(G)$-set, then every vertex of $V(G) - S$ has at least k neighbors in S. Thus S is a k-dominating set of G and so $\gamma_k(G) \leq |S| = \gamma^k_o(G)$. ■

Using Theorem 1 for $r = 2$ and Observation 3, we obtain the known theorem by Blidia, Chellali and Volkmann [2].
Corollary 4 (Blidia, Chellali, Volkmann [2] 2006). Let k be a positive integer. If G is a bipartite graph, then

$$\gamma_k(G) \leq \frac{n(G) + |L_k(G)|}{2}.$$

Since every graph G is $\chi(G)$-partite and $n(G) \leq \chi(G)\alpha(G)$, we obtain also the following corollaries from Theorem 1.

Corollary 5. If G is a graph and k a positive integer, then

$$\gamma_k^0(G) \leq \frac{(\chi(G) - 1)n(G) + |L_k(G)|}{\chi(G)}.$$

Corollary 6. Let $k \geq 1$ be an integer. If G is a graph with $\delta(G) \geq k$, then

$$\gamma_k^0(G) \leq (\chi(G) - 1)\alpha(G).$$

Theorem 7 (Brooks [3] 1941). If G is a connected graph different from the complete graph and from a cycle of odd length, then $\chi(G) \leq \Delta(G)$.

Combining Brooks’ Theorem and Corollary 6, we can prove the following result.

Theorem 8. Let $k \geq 1$ be an integer, and let G be a connected graph with $\delta(G) \geq k$. Then

$$(1) \quad \gamma_k^0(G) \leq (\Delta(G) - 1)\alpha(G)$$

if and only if G is neither isomorphic to the complete graphs K_{k+1} or K_{k+2} nor to a cycle of odd length when $1 \leq k \leq 2$.

Proof. If G is the complete graph K_n, then $\Delta(G) = \delta(G) = n - 1 \geq k \geq 1$ and $\alpha(G) = 1$. Since $\gamma_k^0(K_{k+1}) = k$ and $\gamma_k^0(K_{k+2}) = k + 1$, inequality (1) is not true for these two complete graphs. However, in the remaining case that $n \geq k + 3$, we observe that $\gamma_k^0(G) \leq n - 2$, and we arrive at the desired bound

$$\gamma_k^0(G) \leq n - 2 = \Delta(G) - 1 = (\Delta(G) - 1)\alpha(G).$$
Assume next that $1 \leq k \leq 2$. If G is a cycle of odd length, then $\Delta(G) = 2$, $\gamma^{k}_0(G) = \gamma^{2}_0(G) = \lfloor n(G)/2 \rfloor$ and $\alpha(G) = \lfloor n(G)/2 \rfloor$ and thus (1) is not valid in these cases.

For all other graphs inequality (1) follows directly from Brooks' Theorem and Corollary 6.

Lemma 9 (Hansberg, Meierling, Volkmann [10]). Let $k \geq 1$ be an integer. If G is a connected graph with $\delta(G) \leq k - 1$ and $\Delta(G) \leq k$, then

$$k\alpha(G) \geq n(G).$$

Theorem 10. Let $k \geq 1$ be an integer. If G is a connected r-partite graph with $\Delta(G) \geq k$, then

$$\gamma^{k}_\alpha(G) \leq \frac{\alpha(G)}{r}((r - 1)r + k - 1).$$

Proof. Assume that $k = 1$. Since G is connected and $\Delta(G) \geq 1$, we note that $|L_1(G)| = 0$. Applying Theorem 1, and using the fact that $r\alpha(G) \geq n(G)$, we receive the desired inequality immediately.

Assume next that $k \geq 2$. Since G is connected and $G - L_k(G)$ is not empty, every component Q of $G[L_k(G)]$ fulfills $\delta(Q) \leq k - 2$ and $\Delta(Q) \leq k - 1$. Hence Lemma 9 implies $(k - 1)\alpha(Q) \geq n(Q)$. If Q_1, Q_2, \ldots, Q_t are the components of $G[L_k(G)]$, we therefore deduce that

$$\alpha(G) \geq \alpha(G[L_k(G)]) = \sum_{i=1}^{t} \alpha(Q_i) \geq \frac{|L_k(G)|}{k - 1}.$$

Combining $n(G) \leq r\alpha(G)$ with Theorem 1, we receive the desired inequality as follows:

$$\gamma^{k}_\alpha(G) \leq \frac{(r - 1)n(G) + |L_k(G)|}{r} \leq \frac{(r - 1)r\alpha(G) + (k - 1)\alpha(G)}{r} = \frac{\alpha(G)}{r}((r - 1)r + k - 1).$$

The case $r = 2$ in Theorem 10 leads to the next result.
Corollary 11. Let \(k \geq 1 \) be an integer. If \(G \) is a connected bipartite graph with \(\Delta(G) \geq k \), then
\[
\gamma^k_\alpha(G) \leq \frac{(k+1)\alpha(G)}{2}.
\]
Using Observation 3, we obtain the following known bounds on the 2-domination number.

Corollary 12 (Fujisawa, Hansberg, Kubo, Saito, Sugita, Volkmann [9] 2008). If \(G \) is a connected bipartite graph of order at least 3, then
\[
\gamma_2(G) \leq \frac{3\alpha(G)}{2}.
\]

Corollary 13 (Blidia, Chellali, Favaron [1] 2005). If \(T \) is a tree of order at least 3, then
\[
\gamma_2(T) \leq \frac{3\alpha(T)}{2}.
\]

Theorem 14 (Favaron, Hansberg, Volkmann [6] 2008). Let \(G \) be a graph. If \(r \geq 1 \) is an integer, then there is a partition \(V(G) = V_1 \cup V_2 \cup \cdots \cup V_r \) of \(V(G) \) such that
\[
|N_G(u) \cap V_i| \leq \frac{d_G(u)}{r}
\]
for each \(i \in \{1, 2, \ldots, r\} \) and each \(u \in V_i \).

Theorem 15. Let \(k \geq 1 \) be an integer. If \(G \) is a graph of order \(n \) with minimum degree \(\delta \geq k \), then
\[
\gamma^k_\alpha(G) \leq \frac{k+1}{k+2}n,
\]
and the bound given in (3) is best possible.

Proof. Choose \(r = k + 2 \) in Theorem 14, and let \(V_1, V_2, \ldots, V_r \) be a partition of \(V(G) \) as in Theorem 14 such that \(|V_1| \geq |V_2| \geq \cdots \geq |V_r| \). If \(D = V_2 \cup V_3 \cup \cdots \cup V_r \), then it follows from (2) and the hypothesis that \(\delta \geq k \) for each \(v \in V_1 = V(G) - D \) that
\[
|N_G(v) \cap D| \geq \left\lfloor \frac{k+1}{k+2}d_G(v) \right\rfloor \geq \left\lfloor \frac{d_G(v)}{k+2} \right\rfloor + k
\]
\[
\geq |N_G(v) \cap V_1| + k = |N_G(v) - D| + k.
\]
Thus D is a global offensive k-alliance of G such that $|D| \leq (k+1)n/(k+2)$, and (3) is proved.

Let H be a connected graph, and let $G_k = H \circ K_{k+1}$. Then it is easy to see that $\gamma^k_o(G_k) = (k+1)n(G_k)/(k+2)$, and therefore (3) is the best possible.

Corollary 16 (Favaron, Fricke, Goddard, Hedetniemi, Hedetniemi, Kristiansen, Laskar, Skaggs [5] 2004). Let G be graph of order n and minimum degree δ.

If $\delta \geq 1$, then $\gamma^1_o(G) \leq 2n/3$.

If $\delta \geq 2$, then $\gamma^2_o(G) \leq 3n/4$.

In the case that $\delta \geq k+2$, we obtain the following bound, improving the bound of Theorem 15.

Theorem 17. Let $k \geq 2$ be an integer, and let G be a graph of order n with minimum degree $\delta \geq k+2$. Then

$$
\gamma^k_o(G) \leq \frac{k}{k+1} n.
$$

Proof. Choose $r = k+1$ in Theorem 14, and let V_1, V_2, \ldots, V_r be a partition of $V(G)$ as in Theorem 14 such that $|V_1| \geq |V_2| \geq \cdots \geq |V_r|$. If $D = V_2 \cup V_3 \cup \cdots \cup V_r$, then it follows from (2) and the hypothesis $\delta \geq k+2$ for each $v \in V_1 = V(G) - D$ that

$$
|N_G(v) \cap D| \geq \left\lceil \frac{k}{k+1} d_G(v) \right\rceil \geq \frac{d_G(v)}{k+1} + k
$$

$$
\geq |N_G(v) \cap V_1| + k = |N_G(v) - D| + k.
$$

Thus D is a global offensive k-alliance of G such that $|D| \leq kn/(k+1)$, and (4) is proved.

Theorem 18. Let $k \geq 1$ be an integer, and let G be a connected non-complete graph such that $\delta(G) \geq k$ and $\gamma^k_o(G) = (\Delta(G) - 1)\alpha(G)$. Then $\Delta(G) \leq k+2$, $\Delta(G) - \delta(G) \leq 1$ and if $k \geq 2$, then $\delta(G) \leq k+1$.

Proof. Because of $\chi(G)\alpha(G) \geq n(G)$, Corollary 5 and the hypothesis imply that

$$
(\Delta(G) - 1)\alpha(G) = \gamma^k_o(G) \leq \frac{(\chi(G) - 1)n(G)}{\chi(G)} \leq (\chi(G) - 1)\alpha(G).
$$
Since \(G \) is neither a complete graph nor a cycle of odd length, it follows from Brooks’ Theorem that \(\Delta(G) = \chi(G), \chi(G)\alpha(G) = n(G) \) and

\[
(5) \quad \gamma_0^k(G) = \frac{(\chi(G) - 1)n(G)}{\chi(G)} = \frac{(\Delta(G) - 1)n(G)}{\Delta(G)}.
\]

If we suppose on the contrary that \(\Delta(G) \geq k + 3 \), then it follows from \((5) \) and Theorem 15 that

\[
\frac{\Delta(G) - 1}{\Delta(G)} n(G) = \gamma_0^k(G) \leq \frac{k + 1}{k + 2} n(G) \leq \frac{\Delta(G) - 2}{\Delta(G) - 1} n(G).
\]

This contradiction shows that \(\Delta(G) \leq k + 2 \).

If we suppose on the contrary that \(\Delta(G) - \delta(G) \geq 2 \), then we deduce that \(\delta(G) = k \) and \(\Delta(G) = k + 2 = \chi(G) \). Since \(\chi(G)\alpha(G) = n(G) \), there exists a partition of \(V(G) \) in \(\chi = \chi(G) \) colour classes \(U_1, U_2, \ldots, U_\chi \) such that \(|U_1| = |U_2| = \cdots = |U_\chi| = \alpha(G) \). Let \(v \) be a vertex of minimum degree \(\delta(G) = k \), and assume, without loss of generality, that \(v \in U_1 \). As \(d_G(v) = k \) and \(\chi(G) = k + 2 \), there exists a colour class \(U_j \) with \(2 \leq j \leq \chi \) such that \(v \) is not adjacent to any vertex in \(U_j \). Therefore \(U_j \cup \{v\} \) is an independent set. This is a contradiction to the fact that \(|U_j| = \alpha(G) \), and the desired inequality \(\Delta(G) - \delta(G) \leq 1 \) is proved.

Next assume that \(k \geq 2 \), and suppose on the contrary that \(\delta(G) \geq k + 2 \). Then \(k \leq \Delta(G) - 2 \) and \((5) \) and Theorem 17 lead to the contradiction

\[
\frac{\Delta(G) - 1}{\Delta(G)} n(G) = \gamma_0^k(G) \leq \frac{k}{k + 1} n(G) \leq \frac{\Delta(G) - 2}{\Delta(G) - 1} n(G).
\]

Thus \(\delta(G) \leq k \leq \delta(G) + 1 \) when \(k \geq 2 \), and the proof of Theorem 18 is complete. \(\blacksquare \)

Example 19.

1. Let \(H_1, H_2, \ldots, H_t \) be \(t \geq 2 \) copies of the complete graph \(K_{k+1} \), and let \(u_i, v_i \in E(H_i) \) for \(1 \leq i \leq t \). Define the graph \(G \) as the disjoint union \(H_1 \cup H_2 \cup \cdots \cup H_t \) together with the edge set \(\{v_1u_2, v_2u_3, \ldots, v_{t-1}u_t\} \). Then it is easy to verify that \(\Delta(G) = k + 1, \delta(G) = k, \alpha(G) = t, \gamma_0^k(G) = tk \) and thus \(\gamma_0^k(G) = (\Delta(G) - 1)\alpha(G) \).

2. Let \(F_1 \) and \(F_2 \) be \(2 \) copies of the complete graph \(K_{k+1} \) with the vertex sets \(V(F_1) = \{x_1, x_2, \ldots, x_{k+1}\} \) and \(V(F_2) = \{y_1, y_2, \ldots, y_{k+1}\} \). Define the graph \(H \) as the disjoint union \(F_1 \cup F_2 \) together with the edge set \(\{x_1y_1, x_2y_2, \ldots, x_ky_k\} \). If \(H_1, H_2, \ldots, H_t \) are \(t \geq 2 \) copies of \(H \), then let
u_{2i-1} and u_{2i} be the vertices of degree k in H_i for all $i \in \{1, 2, \ldots, t\}$. Define the graph G as the disjoint union $H_1 \cup H_2 \cup \cdots \cup H_t$ together with the edge set $\{u_2u_3, u_4u_5, \ldots, u_{2t}u_1\}$. Then G is a $(k + 1)$-regular graph with $\alpha(G) = 2t$, $\gamma_0^k(G) = 2kt$ and thus $\gamma_0^k(G) = (\Delta(G) - 1)\alpha(G)$.

3. Let $k \geq 2$, and let F_1 and F_2 be 2 copies of the complete graph K_k such that $V(F_1) = \{x_1, x_2, \ldots, x_k\}$ and $V(F_2) = \{y_1, y_2, \ldots, y_k\}$. Define the graph H as the disjoint union $F_1 \cup F_2$ together with the edge set $\{x_1y_1, x_2y_2, \ldots, x_{k-1}y_{k-1}\}$. If H_1, H_2, \ldots, H_t are $t \geq 2$ copies of H, then let u_{2i-1} and u_{2i} be the vertices of degree $k - 1$ in H_i for all $i \in \{1, 2, \ldots, t\}$. Define the graph G as the disjoint union $H_1 \cup H_2 \cup \cdots \cup H_t$ together with the edge set $\{u_2u_3, u_4u_5, \ldots, u_{2t}u_1\}$. Then G is a k-regular graph with $\alpha(G) = 2t$, $\gamma_0^k(G) = 2(k - 1)t$ and thus $\gamma_0^k(G) = (\Delta(G) - 1)\alpha(G)$.

4. Let H_1 and H_2 be 2 copies of the complete graph K_{k+2}, and let $x \in E(H_1)$ and $y \in E(H_2)$. Define the graph G' as the disjoint union $H_1 \cup H_2$ together with the edge xy. Then $\Delta(G') = k + 2$, $\delta(G') = k + 1$, $\alpha(G') = 2$, $\gamma_0^k(G') = 2(k + 1)$ and thus $\gamma_0^k(G') = (\Delta(G') - 1)\alpha(G')$.

These four examples show that $\Delta = k + 1$ and $\delta = k$, $\Delta = \delta = k + 1$, $\Delta = \delta = k + 2$ and $\delta = k + 1$ in Theorem 18 are possible.

Theorem 20. If G is a graph and k an integer such that $1 \leq k \leq \delta(G) - 1$, then

$$\gamma_0^{k+1}(G) \leq \frac{\gamma_0^k(G) + n(G)}{2}.$$

Proof. Let S be a $\gamma_0^k(G)$-set, and let A be the set of isolated vertices in the subgraph induced by the vertex set $V(G) - S$. Then the subgraph induced by $V(G) - (S \cup A)$ contains no isolated vertices. If D is a minimum dominating set of $G[V(G) - (S \cup A)]$, then the well-known inequality of Ore [12] implies

$$|D| \leq \frac{|V(G) - (S \cup A)|}{2} \leq \frac{|V(G) - S|}{2} = \frac{n(G) - \gamma_0^k(G)}{2}.$$

Since $\delta(G) \geq k + 1$, every vertex of A has at least $k + 1$ neighbors in S, and therefore $D \cup S$ is a global offensive $(k + 1)$-alliance of G. Thus we obtain the desired bound as follows:

$$\gamma_0^{k+1}(G) \leq |S \cup D| \leq \gamma_0^k(G) + \frac{n(G) - \gamma_0^k(G)}{2} = \frac{\gamma_0^k(G) + n(G)}{2}. \quad \blacksquare$$
The graphs G of even order and without isolated vertices with $\gamma(G) = n/2$ have been characterized independently by Payan and Xuong [13] and Fink, Jacobson, Kinch and Roberts [8].

Theorem 21 (Payan, Xuong [13] 1982 and Fink, Jacobson, Kinch, Roberts [8] 1985). Let G be a graph of even order n without isolated vertices. Then $\gamma(G) = n/2$ if and only if each component of G is either a cycle C_4 or the corona of a connected graph.

A graph is P_4-free if and only if it contains no induced subgraph isomorphic to the path P_4 of order four. A graph is (K_4-e)-free if and only if it contains no induced subgraph isomorphic to the graph K_4-e, where e is an arbitrary edge of the complete graph K_4. The graph \overline{G} denotes the complement of the graph G. Next we give a characterization of some special graphs attaining equality in Theorem 20.

Theorem 22. Let G be a connected P_4-free graph such that \overline{G} is (K_4-e)-free. If k is an integer with $1 \leq k \leq \delta(G) - 1$, then $\gamma_o^{k+1}(G) = (\gamma_o^k(G) + n(G))/2$ if and only if

1. $G = K_{k+3}$ or
2. $\overline{G} = H \cup 2K_{1,1}$ such that $n(H) = k + 2$ and all components of H are isomorphic to $K_{1,1}$, to $K_{3,3}$, to $K_{3,4}$ or to $K_{4,4}$ or
3. $G = (Q_1 \cup Q_2) + F$, where Q_1, Q_2 and F are three pairwise disjoint graphs such that $1 \leq |V(F)| \leq k + 1$, $\alpha(F) \leq 2$, and Q_1 and Q_2 are cliques with $|V(Q_1)| = |V(Q_2)| = k + 3 - |V(F)|$ such that $|V(F)| \leq 2$ or $\alpha(F) = 1$ and $|V(F)| = k + 1$ or $\alpha(F) = 2$ and $F = K_{k+1} - M$, where M is a matching of F or $\alpha(F) = 2$ and $F = K_k - M$, where M is a perfect matching of F or $\alpha(F) = 2$ and $|V(F)| = k + 1 - t$ for $0 \leq t \leq k - 2$ with $k \geq 3t + 3$ and all components of F are isomorphic to $K_{t+2,t+2}$, to $K_{t+2,t+3}$ or to $K_{t+3,t+3}$.

Proof. Assume that $\gamma_o^{k+1}(G) = (\gamma_o^k(G) + n(G))/2$. Following the same notation as used in the proof of Theorem 20, we obtain $|D| = \frac{|V(G)| - S}{2}$, and we observe that $S \cup D$ is a $\gamma_o^{k+1}(G)$-set. It follows that $G[V(G) - S]$ has no isolated vertices and so by Theorem 21, each component of $G[V(G) - S]$ is either a cycle C_4 or the corona of some connected graph. Using the
hypothesis that \(G\) is \(P_4\)-free, we deduce that each component of \(G[V(G) - S]\) is isomorphic to \(K_2\) or to \(C_4\). Since \(G\) is \((K_4 - e)\)-free, there remain exactly the three cases that \(G[V(G) - S]\) is isomorphic to \(K_2\), to \(C_4\) or to \(2K_2\).

Case 1. First assume that \(G[V(G) - S] = K_2\). Suppose that \(G\) has an independent set \(Q\) of size at least two. Then the hypothesis \(\delta(G) \geq k + 1\) implies that \(V(G) - Q\) is a global offensive \((k + 1)\)-alliance of \(G\) of size \(n - |Q| < |S \cup D| = n - 1\), a contradiction. Therefore \(\alpha(G) = 1\) and thus \(G = K_{k+3}\).

Case 2. Second assume that \(G[V(G) - S]\) is a cycle \(C_4 = x_0x_1x_2x_3x_0\). In the following the indices of the vertices \(x_i\) are taken modulo 4. Recall that \(S \cup D\) is a \(\gamma_o^{i+1}(G)\)-set, and \(D\) contains two vertices of the cycle \(C_4\). Clearly, since \(S\) is a \(\gamma_o^i(G)\)-set, every vertex of the cycle \(C_4\) has degree at least \(k + 4\). Suppose that \(d_G(x_i) \geq k + 5\) for an \(i \in \{0, 1, 2, 3\}\). Then \(\{x_{i+2}\} \cup S\) is a global offensive \((k + 1)\)-alliance of \(G\) of size \(|S| + 1 < |S \cup D| = |S| + 2\), a contradiction. Thus \(d_G(x_i) = k + 4\) for every \(i \in \{0, 1, 2, 3\}\). Now if \(Q\) is an \(\alpha(G)\)-set, then \(|Q| \leq 2\), for otherwise the hypothesis \(\delta(G) \geq k + 1\) implies that \(V(G) - Q\) is a global offensive \((k + 1)\)-alliance of \(G\) of size \(|V(G) - Q| < |S \cup D| = n(G) - 2\), a contradiction too. Since there are two non-adjacent vertices on the cycle \(C_4\) and \(G\) is \(P_4\)-free, it follows that every vertex of \(S\) has at least three neighbors on the cycle \(C_4\).

Subcase 2.1. Assume that \(\alpha(G[S]) = 1\). Then the subgraph induced by \(S\) is complete and \(|S| \geq k + 2\). If \(|S| = k + 2\), then we observe that every vertex of \(S\) has exactly four neighbours on the cycle \(C_4\). Thus, in each case, we deduce that \(d_G(y) \geq k + 5\) for every \(y \in S\). But then for any subset \(W\) of \(S\) of size three, the set \(V(G) - W\) is a global offensive \((k + 1)\)-alliance of \(G\) of size less than \(|S \cup D|\), a contradiction.

Subcase 2.2. Assume that \(\alpha(G[S]) = 2\). Suppose that there exists a vertex \(w \in S\) with at least \(k + 1\) neighbors in \(S\). Then, since \(|N(w) \cap V(C_4)| \geq 3\), say \(\{x_0, x_1, x_2\} \subseteq N(w) \cap V(C_4)\), we observe that \((S - \{w\}) \cup \{x_0, x_2\}\) is a global offensive \((k + 1)\)-alliance of \(G\) of size \(|S| + 1 < |S \cup D|\), a contradiction. Thus every vertex of \(S\) has at most \(k\) neighbors in \(S\).

Let \(S = X \cup Y\) such that every vertex of \(X\) has exactly three and every vertex of \(Y\) exactly 4 neighbors on \(C_4\). We shall show that \(X = \emptyset\). If \(X \neq \emptyset\), then let \(S_{x_i} \subseteq X\) be the set of vertices such that each vertex of \(S_{x_i}\) is not adjacent to \(x_{i+2}\) for \(i \in \{0, 1, 2, 3\}\). Because of \(\alpha(G) = 2\), we observe that
the set $S_{x_i} \cup \{x_i\}$ induces a complete graph for each $i \in \{0,1,2,3\}$. In addition, since G is P_4-free it is straightforward to verify that all vertices of $X \cup C_4$ are adjacent to all vertices of Y and that $S_{x_i} \cup S_{x_{i+1}} \cup \{x_i, x_{i+1}\}$ induces a complete graph for each $i \in \{0,1,2,3\}$. Now assume, without loss of generality, that $S_{x_0} \neq \emptyset$, and let $w \in S_{x_0}$. On the one hand we have seen above that $d_G(w) \leq k + 3$. On the other hand, we observe that $d_G(w) = d_G(x_0)$. But since $d_G(x_0) = k + 4$, we have a contradiction.

Hence we have shown that $X = \emptyset$, and this leads to $|S| = k + 2$. If we define $H = G[S]$, then $\omega(H) = 2$, $\delta(H) \geq 1$ and $\Delta(H) \leq 4$. Since H is also P_4-free, H does not contain an induced cycle of odd length. Using $\omega(H) = 2$, we deduce that H is a bipartite graph. Now let H_1 be a component of H. If H_1 is not a complete bipartite graph, then H_1 contains a P_4, a contradiction. Thus the components of H consists of $K_{1,1}$, $K_{1,2}$, $K_{1,3}$, $K_{1,4}$, $K_{2,2}$, $K_{2,3}$, $K_{2,4}$, $K_{3,3}$, $K_{3,4}$ or $K_{4,4}$.

If $K_{1,2}$ is a component of H, then $V(G) - V(K_{1,2})$ is a global offensive $(k + 1)$-alliance of G of size $n - 3$, a contradiction.

If $K_{1,3}$ is a component of H with a leaf u, then $(V(G) - V(K_{1,3})) \cup \{u\}$ is a global offensive $(k + 1)$-alliance of G of size $n - 3$, a contradiction.

If $K_{1,4}$ is a component of H and u,v are two leaves of this star, then $(V(G) - V(K_{1,3})) \cup \{u,v\}$ is a global offensive $(k + 1)$-alliance of G of size $n - 3$, a contradiction.

If $K_{2,2}$ is a component of H, then $V(G) - V(K_{2,2})$ is a global offensive $(k + 1)$-alliance of G of size $n - 4$, a contradiction.

Next let $K_{2,3}$ be a component of H with the bipartition $\{v_1, v_2, v_3\}$ and $\{u_1, u_2\}$. Then $V(G) - \{u_1, v_1, v_2\}$ is a global offensive $(k + 1)$-alliance of G of size $n - 3$, a contradiction.

Finally, let $K_{2,4}$ be a component of H with the bipartition $\{v_1, v_2, v_3, v_4\}$ and $\{u_1, u_2\}$. Then $V(G) - \{u_1, v_1, v_2\}$ is a global offensive $(k + 1)$-alliance of G of size $n - 3$, a contradiction.

Case 3. Third assume that $G[V(G) - S] = 2K_2$. Let $2K_2 = J_1 \cup J_2 = J$ such that $V(J_1) = \{u_1, u_2\}$ and $V(J_2) = \{u_3, u_4\}$. If $\alpha(G) \geq 3$, then we obtain the contradiction $\gamma^{k+1}_0(G) \leq n - 3$. Thus $\alpha(G) = 2$. Since S is a $\gamma^k_0(G)$-set, every vertex of J has degree at least $k + 2$. Suppose that $d_G(u_1) \geq k + 3$ and $d_G(u_2) \geq k + 3$. Then $\{u_3\} \cup S$ is a global offensive $(k + 1)$-alliance of G of size $|S| + 1 < |S \cup D| = |S| + 2$, a contradiction. Thus J_1 contains at least one vertex of degree $k + 2$, and for reason of symmetry, also J_2 contains a vertex of degree $k + 2$. Since $\alpha(G) = 2$, every vertex of
S has at least two neighbors in J_1 or in J_2. Now let $x \in S$. If x has two neighbors in J_i and one neighbor in J_{3-i} for $i = 1, 2$, then the hypothesis that G is P_4-free implies that x is adjacent to each vertex of J. Consequently, S can be partitioned in three subsets S_1, S_2 and A such that all vertices of S_1 are adjacent to all vertices of J_1 and there is no edge between S_1 and J_2, all vertices of S_2 are adjacent to all vertices of J_2 and there is no edge between S_2 and J_1, all vertices of A are adjacent to all vertices of J. Since G is P_4-free, it follows that there is no edge between S_1 and S_2, and that all vertices of S_i are adjacent to all vertices of A for $i = 1, 2$. Furthermore, $\alpha(G) = 2$ shows that $G[S_1]$ and $G[S_2]$ are cliques. Altogether we see that $G[S_1]$ and $G[S_2]$ are cliques. Altogether we see that $d_G(u_i) = k + 2$ for each $i \in \{1, 2, 3, 4\}$ and therefore $|S_1| + |A| = |S_2| + |A| = k + 1$. It follows that $|S_1| = |S_2|$ and $|S| + |A| = 2k + 2$. Since G is connected, we deduce that $|A| \geq 1$ and so $1 \leq |A| \leq k + 1$. If we define $F = G[A]$ and $Q_i = G[S_i \cup V(J_i)]$ for $i = 1, 2$, then we derive the desired structure, since $\alpha(G[A]) \leq 2$.

Assume that $|V(F)| \geq 3$ and $\alpha(F) = 1$. If x_1, x_2, x_3 are three arbitrary vertices in F, then let $S_0 = V(G) - \{x_1, x_2, x_3\}$. If $d_G(x_i) \geq k + 5$ for each $i = 1, 2, 3$, then S_0 is a global offensive $(k+1)$-alliance of G, a contradiction. Otherwise, we have $n - 1 = d_G(x_i) \leq k + 4$ for at least one $i \in \{1, 2, 3\}$ and so $n \leq k + 5$ and thus $|V(F)| = k + 1$.

Assume next that $|V(F)| \geq 3$ and $\alpha(F) = 2$. As we have seen in Case 2, all components of \overline{F} are complete bipartite graphs.

Subcase 3.1. Assume that $K_{1, 1}$ is the greatest component of \overline{F}. Let u and v be the two vertices of the complete bipartite graph $K_{1, 1}$. If $n \geq k + 7$, then let w be a further vertex in F, and it is easy to verify that $V(G) - \{u, v, w\}$ is a global offensive $(k+1)$-alliance of G of size $n - 3$, a contradiction. If $n = k + 6$ and there exists a vertex w in F of degree $k + 5$, then $V(G) - \{u, v, w\}$ is a global offensive $(k+1)$-alliance of G of size $n - 3$, a contradiction.

Subcase 3.2. Assume that $|V(F)| = k + 1 - t$ for $0 \leq t \leq k - 2$ and \overline{F} contains a component $K_{p, q}$ with $1 \leq p \leq q$ and $p + q \geq 3$. Let $\{v_1, v_2, \ldots, v_q\}$ and $\{u_1, u_2, \ldots, u_p\}$ be a partition of $K_{p, q}$.

If $K_{1, s} \subseteq \overline{F}$ with $s \geq t + 4$, then $\delta(G) \leq k$, a contradiction to $\delta(G) \geq k + 1$. Thus $q \leq t + 3$.

If $q \leq t + 1$ or $q = t + 2$ and $p \leq t + 1$, then it is easy to see that $V(G) - \{u_1, v_1, v_2\}$ is a global offensive $(k+1)$-alliance of G of size $n - 3$, a contradiction.
Conversely, if $G = K_{k+3}$, then obviously $\gamma_o^k(G) = k + 1$, $\gamma_o^{k+1}(G) = k + 2$ and so $\gamma_o^{k+1}(G) = (\gamma_o^k(G) + n(G))/2$.

Now let $G = H \cup 2K_{1,1}$ such that $n(H) = k + 2$ and the components of H are complete bipartite graphs $K_{1,1}$, $K_{3,3}$, $K_{3,4}$ or $K_{4,4}$. Thus $k + 1 \leq d_G(z) \leq k + 4$ for every $z \in V(G)$, and G contains a cycle C on four vertices, where each vertex of C has degree at least two. This implies that $\gamma_o^k(G) = n(G) - 2$, $\gamma_o^{k+1}(G) \geq n(G) - 4$. Let D be a $\gamma_o^{k+1}(G)$-set. First, assume that $\gamma_o^{k+1}(G) = n(G) - 4$.

Now let us prove that $\gamma_o^{k+1}(G) = n(G) - 2$. Clearly, $\gamma_o^{k+1}(G) \geq \gamma_o^k(G) \geq n(G) - 4$. Let D be a $\gamma_o^{k+1}(G)$-set. First, assume that $\gamma_o^{k+1}(G) = n(G) - 4$. Then, since $n(G) = k + 6$ and $\alpha(G) = 2$, the induced subgraph $G[V(G) - D]$ is isomorphic to $2K_{1,1}$, say ab and cd, and every vertex of $V(G) - D$ is adjacent to all vertices of D. Since $d_G(x) = k + 3$ for every $x \in \{a, b, c, d\}$ it follows that a, b, c, d lie in one component C_4 of H, a contradiction. Second, assume that $\gamma_o^{k+1}(G) = n(G) - 3$. Since every vertex has degree at most $k + 4$, no vertex of $V(G) - D$ has two neighbors in $V(G) - D$. Moreover, since $\alpha(G) = 2$, $G[V(G) - D]$ is formed by two adjacent vertices x, y plus an isolated vertex w. Since w has degree at least two in G, the vertices w, x, y lie in one component in H and so belong to $K_{3,3}$, $K_{3,4}$ or $K_{4,4}$. Thus each of x and y has at least two non-neighbors in D and hence $|N(x) \cap D| \leq k + 1$, a contradiction to the fact D is a $\gamma_o^{k+1}(G)$-set. Thus $|D| \geq n(G) - 2$ and the equality follows from the fact that $V(G)$ minus any two non-adjacent vertices of C is a global offensive $(k + 1)$-alliance of G. Therefore $\gamma_o^{k+1}(G) = n(G) - 2 = (\gamma_o^k(G) + n(G))/2$.

Finally, let $G = (Q_1 \cup Q_2) + F$, where Q_1, Q_2 and F are three pairwise disjoint graphs such that $1 \leq |V(F)| \leq k + 1$, $\alpha(F) \leq 2$, and Q_1 and Q_2 are cliques with $|V(Q_1)| = |V(Q_2)| = k + 3 - |V(F)|$ such that $|V(F)| \leq 2$ or $\alpha(F) = 1$ and $|V(F)| = k + 1$ or $\alpha(F) = 2$ and $F = K_{k+1} - M$, where M is matching of F or $\alpha(F) = 2$ and $F = K_k - M$, where M is a perfect matching of F or $\alpha(F) = 2$ and $|V(F)| = k + 1 - t$ for $0 \leq t \leq k - 2$ with $k \geq 3t + 3$ and all components of F are isomorphic to $K_{t+2,t+2}$, to $K_{t+3,t+3}$ or to $K_{t+3,t+3}$.

Let D be a global offensive $(k + 1)$-alliance of G. Since each vertex of Q_i has degree $k + 2$, the set $V(G) - D$ contains at most one vertex of Q_i for every $i = 1, 2$. Moreover, if $(V(G) - D) \cap V(Q_i) \neq \emptyset$, then $V(F) \subseteq D$.

610 M. Chellali, T.W. Haynes, B. Randerath and L. Volkmann
Now suppose that $\gamma_{\alpha}^{k+1}(G) \leq n - 3$, and assume, without loss of generality, that $V(G) - D = \{u, v, w\}$. Then as noted above $V(Q_1) \cup V(Q_2) \subseteq D$, and hence the vertices u, v, w belong to $V(F)$. It follows that $|V(F)| \geq 3$.

Obviously, we obtain a contradiction when $\alpha(F) = 1$ and $|V(F)| = k + 1$.

Assume next that $\alpha(F) = 2$. This implies that at least two vertices of $V(G) - D$ are adjacent in G.

First assume that $F = K_k - M$, where M is a perfect matching of F. Note that every vertex of $V(F)$ has degree $k + 4$. Since M is perfect, $\{u, v, w\}$ induces either a path P_3 or a clique K_3 with center vertex, say v, in G. But then v has a non-neighbor in D for which it is matched in M, and so v has exactly $k + 2$ neighbors in D against two in $V(G) - D$, a contradiction.

Second assume that $F = K_{k+1} - M$, where M is a matching of F. Note that $n = k + 5$ and $|D| = k + 2$. As above, $\{u, v, w\}$ induces either a path P_3 or a clique K_3 with center vertex, say v, in G. But then v has at most $k + 2$ neighbors in D against two in $V(G) - D$, a contradiction.

Assume now that $\alpha(F) = 2$ and $|V(F)| = k + 1 - t$ for $0 \leq t \leq k - 2$ with $k \geq 3t + 3$ and all components of \overline{F} are isomorphic to $K_{t+2,t+2}$, to $K_{t+2,t+3}$ or to $K_{t+3,t+3}$. Note that in this case $n = k + 5 + t$ and so $|D| = n - 3 = k + 2 + t$. Assume, without loss of generality, that u and v are adjacent in G. This leads to $|N_G(u) \cap D| \leq (k + 5 + t) - (t + 2 + 2) = k + 1$, a contradiction to the assumption that D is a global offensive $(k + 1)$-alliance of G.

Altogether, we have shown that $\gamma_{\alpha}^{k+1}(G) = n - 2$. Finally, it is a simple matter to obtain $\gamma_{\alpha}^{k}(G) = n - 4$, and the proof of Theorem 22 is complete.

3. Lower Bounds

Our aim in this section is to give lower bounds on the global offensive k-alliance number of a graph in terms of its order n, minimum degree δ and maximum degree Δ.

Theorem 23. Let k be a positive integer. If G is a graph of order n, minimum degree δ and maximum degree Δ, then

$$\gamma_{\alpha}^{k}(G) \geq \frac{n(\delta + k)}{2\Delta + \delta + k}.$$

Proof. If S is any $\gamma_{\alpha}^{k}(G)$-set, then

$$\Delta \gamma_{\alpha}^{k}(G) = \Delta |S| \geq \sum_{v \in S} d_G(v) \geq \sum_{v \in V(G) - S} \frac{d_G(v) + k}{2}.$$
This leads to
\[\gamma_0^k(G)(2\Delta + \delta + k) \geq n(\delta + k),\]
and (6) is proved.

Theorem 24. Let \(k \geq 1 \) be an integer, and let \(G \) be a graph of order \(n \), minimum degree \(\delta \) and maximum degree \(\Delta \). If \(\delta \) is even and \(k \) odd or \(\delta \) odd and \(k \) even, then
\[\gamma_0^k(G) \geq \frac{n(\delta + k + 1)}{2\Delta + \delta + k + 1}.\]

Proof. If \(S \) is any \(\gamma_0^k(G) \)-set, then
\[
\Delta\gamma_0^k(G) = \Delta |S| \geq \sum_{v \in S} d_G(v)
\]
\[
\geq \sum_{v \in V(G) - S, d_G(v) = \delta} \frac{d_G(v) + k + 1}{2} + \sum_{v \in V(G) - S, d_G(v) > \delta} \frac{d_G(v) + k}{2}
\]
\[
\geq |V(G) - S| \frac{\delta + k + 1}{2} = (n - \gamma_0^k(G)) \frac{\delta + k + 1}{2}.
\]
This leads to
\[\gamma_0^k(G)(2\Delta + \delta + k + 1) \geq n(\delta + k + 1),\]
and (7) is proved.

Example 25. Let \(G \) be a \(k \)-regular bipartite graph of order \(n \) with the partite sets \(X \) and \(Y \). Then
\[
\gamma_0^k(G) = |X| = |Y| = \frac{n}{2} = \frac{n(\delta + k)}{2\Delta + \delta + k}
\]
and
\[
\gamma_0^{k-1}(G) = |X| = |Y| = \frac{n}{2} = \frac{n(\delta + (k - 1) + 1)}{2\Delta + \delta + (k - 1) + 1}
\]
for \(k \geq 2 \). This family of graphs demonstrate that the bounds in Theorems 23 and 24 are best possible.
References

Received 8 July 2008
Revised 8 December 2008
Accepted 8 December 2008