MULTICOLOR RAMSEY NUMBERS FOR SOME PATHS AND CYCLES

HALINA BIELAK

Institute of Mathematics
UMCS, Lublin, Poland

e-mail: hbiel@golem.umcs.lublin.pl

Abstract

We give the multicolor Ramsey number for some graphs with a path or a cycle in the given sequence, generalizing a results of Faudree and Schelp [4], and Dzido, Kubale and Piwakowski [2, 3].

Keywords: cycle, path, Ramsey number.

2000 Mathematics Subject Classification: 05C55.

1. Introduction

We consider simple graphs with at least two vertices. For given graphs G_1, G_2, \ldots, G_k and $k \geq 2$ multicolor Ramsey number $R(G_1, G_2, \ldots, G_k)$ is the smallest integer n such that in arbitrary k-colouring of edges of a complete graph K_n a copy of G_i in the colour i ($1 \leq i \leq k$) is contained (as a subgraph).

Let $ex(n, F)$ be the Turán number for integer n and a graph F, defined as the maximum number of edges over all graphs of order n without any subgraph isomorphic to F.

Theorems 1, 2 and 3 presented below are very useful for study multicolour Ramsey numbers for paths and cycles. In this paper we generalize the results presented in Theorems 4 and 5.

Theorem 1 (Faudree and Schelp [4]). If G is a graph with $|V(G)| = kp + r$ ($0 \leq k, 0 \leq r < p$) and G contains no P_{p+1}, then $|E(G)| \leq kp(p-1)/2 + r(r-1)/2$ with the equality if and only if $G = kK_p \cup K_r$ or $G = lK_p \cup$
\[(K_{(p-1)/2} + K_{(p+1)/2 + (k-l-1)p+r}) \text{ for some } 0 \leq l < k, \text{ where } p \text{ is odd, and } k > 0, r = (p \pm 1)/2.\]

Let \(c(G)\) be the circumference of \(G\), i.e., the length of the longest cycle in \(G\).

Theorem 2 (Brandt [1]). Every non-bipartite graph \(G\) of order \(n\) with more than \(\frac{(n-1)^2}{4} + 1\) edges contains cycles of every length \(t\), where \(3 \leq t \leq c(G)\).

For positive integers \(a\) and \(b\), set \(r(a; b) = a \mod b = a - \lfloor \frac{a}{b} \rfloor b\). For integers \(n \geq k \geq 3\), set
\[
\omega(n, k) = \frac{1}{2}(n-1)k - \frac{1}{2}r(k-r-1),
\]
where \(r = r(n-1, k-1)\).

Theorem 3 (Woodall [7]). Let \(G\) be a graph of order \(n\) and size \(m\) with \(m \geq n\) and \(c(G) = k\). Then \(m \leq \omega(n, k)\) and the result is best possible.

In 1975 Faudree and Schelp published the following results concerning a multicolor Ramsey number for paths.

Theorem 4 (Faudree and Schelp [4]). If \(r_0 \geq 6(r_1 + r_2)^2\), then \(R(P_{r_0}, P_{r_1}, P_{r_2}) = r_0 + \lceil \frac{r_1}{2} \rceil + \lceil \frac{r_2}{2} \rceil - 2\) for \(r_1, r_2 \geq 2\).

If \(r_0 \geq 6(\sum_{i=1}^{k} r_i)^2\), then \(R(P_{r_0}, P_{2r_1 + \delta}, P_{2r_2}, \ldots, P_{2r_k}) = \sum_{i=0}^{k} r_i - k\) for \(\delta = 0, 1, \ k \geq 1\) and \(r_i \geq 1\) (\(1 \leq i \leq k\)).

Recently, Dzido, Kubale, and Piwakowski published the following results.

Theorem 5 (Dzido et al. [2, 3]). \(R(P_3, C_k, C_k) = 2k - 1\) for odd \(k \geq 9\), \(R(P_4, C_k) = k + 2\) for \(k \geq 6\), \(R(P_3, P_5, C_k) = k + 1\) for \(k \geq 8\).

Moreover, some asymptotic results are cited below.

Theorem 6 (Kohayakawa, Simonovits, Skokan [6]). There exists an integer \(n_0\) such that if \(n > n_0\) is odd, then \(R(C_n, C_n, C_n) = 4n - 3\).

Theorem 7. (Figaj, Luczak [5]). For even \(n\), \(R(C_n, C_n, C_n) = 2n + o(n)\).
2. Results

First we prove the following theorem, extending the result of Dzido et al. (see Theorem 5).

Theorem 8. Let \(t, q \ (t \geq q \geq 2) \) be positive integers and \(m \) be odd integer. Let for even \(q \) either \(t > \frac{3}{2}q^2 - 2q + 2 \) and \(m = t + \lfloor \frac{q}{2} \rfloor \) or \(t > \frac{5}{8}(3q^2 - 10q + 16) \) and \(m \leq t + \lfloor \frac{q}{2} \rfloor - 1 \). Let for odd \(q \), \(t > \frac{1}{2}(3q^2 - 14q + 21) \) and \(m \leq t + \lfloor \frac{q}{2} \rfloor - 1 \). Then \(R(P_q, P_t, C_m) = 2t + 2\lfloor \frac{q}{2} \rfloor - 3 \).

Proof. Let \(n = 2t + 2\lfloor \frac{q}{2} \rfloor - 3 \) and \(a = t + \lfloor \frac{q}{2} \rfloor - 2 \). First we prove that \(R(P_q, P_t, C_m) \geq 2t + 2\lfloor \frac{q}{2} \rfloor - 3 \). Let \(K_a \) be (red, blue)-coloured without red \(P_q \) and without blue \(P_t \). It is possible by \(R(P_q, P_t) = a + 1 \). So there exists the critical colouring of the graph \(H = K_a \cup K_m \). Let the edges of \(H \) be coloured with green. Since \(H \) is bipartite graph it does not contain any \(C_m \).

Now we prove that \(R(P_q, P_t, C_m) \leq 2t + 2\lfloor \frac{q}{2} \rfloor - 3 \).

Note that \(|E(K_a)| = (2t + 2\lfloor \frac{q}{2} \rfloor - 3)(t + \lfloor \frac{q}{2} \rfloor - 2) \) and \(|E(K_{a,0})| = (t + \lfloor \frac{q}{2} \rfloor - 2)^2 \).

Let \(d = |E(K_a)| - |E(K_{a,0})| = (t + \lfloor \frac{q}{2} \rfloor - 2)(t + \lfloor \frac{q}{2} \rfloor - 1) \).

So

\[
(2) \quad d = (t-1)(t+q-4) + \left\lfloor \frac{q}{2} \right\rfloor \left(\left\lfloor \frac{q}{2} \right\rfloor - 1 \right) + 2(t-1) - (t-1) \left(\left\lfloor \frac{q}{2} \right\rfloor - \left\lfloor \frac{q}{2} \right\rfloor \right).
\]

Suppose that we can colour \(E(K_n) \) with three colours (red, blue, green) without red \(P_q \), blue \(P_t \) and green \(C_m \). So the red subgraph of \(K_n \) has at most \(\text{ex}(n, P_q) \) edges and the blue subgraph of \(K_n \) has at most \(\text{ex}(n, P_t) \) edges. Now we apply Theorem 1 for \(p = t - 1 \). We have two cases. If \(2|q \) and \(t = q \) then set \(k = 3, r = 0 \). In the opposite case, set \(k = 2 \) and \(r = 2\lfloor \frac{q}{2} \rfloor - 1 \). Thus, we can write \(\text{ex}(n, P_t) \leq (t-1)(t-2) + (2\lfloor \frac{q}{2} \rfloor - 1)\left(\left\lfloor \frac{q}{2} \right\rfloor - 1 \right) \).

Moreover, by Theorem 1 for \(p = q - 1 \), we get \(\text{ex}(n, P_q) \leq \frac{n(q-2)}{2} \). So \(\text{ex}(n, P_q) \leq (t-1)(q-2) + \frac{1}{2}(2\lfloor \frac{q}{2} \rfloor - 1)(q-2) \).

Let \(s = \text{ex}(n, P_t) + \text{ex}(n, P_q) \). So the red-blue subgraph of \(K_n \) has at most \(s \) edges and

\[
s \leq (t-1)(t+q-4) + (q-1)(q-2) - \begin{cases}
0, & 2|q, \\
3(q-2), & 2 \not| q.
\end{cases}
\]
By the above fact and (2) we note that
\[d - s \geq h(q, t), \]
where
\[h(q, t) = \left\lfloor \frac{q}{2} \right\rfloor \left(\left\lfloor \frac{q}{2} \right\rfloor - 1 \right) - (q - 1)(q - 2) + (t - 1) + \begin{cases} (t - 1), & 2|q, \\ \frac{3(q-2)}{2}, & 2 \nmid q. \end{cases} \]

Moreover, \(h(q, t) > 0 \) if and only if
\[t > \begin{cases} \frac{1}{8} (3q^2 - 10q + 16), & 2|q, \\ \frac{1}{4} (3q^2 - 14q + 21), & 2 \nmid q. \end{cases} \]

So for \(t \) satisfying the above condition the green subgraph \(G' \) of \(K_n \) has more edges than the graph \(K_{a,a} \). Namely, \(|E(G')| > |E(K_{a,a})| + h(q, t) \). Note that \(G' \) is not a bipartite graph. In the opposite case we have at least
\[t + \left\lfloor \frac{q}{2} \right\rfloor - 1 = R(P_t, P_q) \]
vertices in a part of the bipartite graph and the proof is done since we get a red \(P_q \) or a blue \(P_t \).

By definition (1), we get
\[\omega(n, m - 1) = \omega(2t + 2 \left\lfloor \frac{q}{2} \right\rfloor - 3, m - 1) = (t + \left\lfloor \frac{q}{2} \right\rfloor - 2)(m - 1) - \frac{1}{2} r(m - 2 - r), \]
where \(r = r(n - 1, m - 2) \). So \(\omega(n, m - 1) \leq (t + \left\lfloor \frac{q}{2} \right\rfloor - 2)(m - 1) \).

We would like to apply the theorems of Woodall and Brandt. We look for a lower bound of the longest cycle in the green graph \(G' \). Thus let \(b \geq 0 \) be maximum integer \(b \geq 0 \) such that the following inequalities hold
\begin{enumerate}[(i)]
 \item \(b \cdot a < h(q, t) \)
 \item \(\omega(n, m - 1) \leq (t + \left\lfloor \frac{q}{2} \right\rfloor - 2)(t + \left\lfloor \frac{q}{2} \right\rfloor - 2 + b) < |E(G')| \).
\end{enumerate}

Evidently \(b < 2 \), else we get a contradiction to the first of the above inequalities. Moreover, if \(2|q \) and \(t > \frac{1}{4} (3q^2 - 8q + 8) \), then \(b = 1 \). For other cases \(b = 0 \).

Then, by Theorem 3, we get \(c(G') \geq (t + \left\lfloor \frac{q}{2} \right\rfloor - 1 + b) \). Thus we get a cycle of order at least \((t + \left\lfloor \frac{q}{2} \right\rfloor - 1 + b) \) in the green graph \(G' \).

Moreover, \(\frac{(n-1)^2}{4} + 1 = (t + \left\lfloor \frac{q}{2} \right\rfloor - 2)^2 + 1 < |E(G')| \). So, by Theorem 2, the green graph \(G' \) is weakly pancyclic. Hence we get a green cycle \(C_m \) for \(m \leq t + \left\lfloor \frac{q}{2} \right\rfloor - 1 + b \), a contradiction. Therefore each (red, blue, green)-colouring of \(E(K_n) \) contains a red \(P_q \), a blue \(P_t \) or a green \(C_m \). So we get the upper bound for \(R(P_q, P_t, C_m) \). The proof is done.

In general case we get the following theorem.
Theorem 9. \(R(P_q, P_t, C_m) \geq \left\lfloor \frac{n}{q} \right\rfloor - 2 + \max \{ t + \left\lfloor \frac{m}{q} \right\rfloor, m + \left\lfloor \frac{n}{q} \right\rfloor \} \).

Proof. Let \(r = \left\lfloor \frac{n}{q} \right\rfloor - 3 + \max \{ t + \left\lfloor \frac{m}{q} \right\rfloor, m + \left\lfloor \frac{n}{q} \right\rfloor \} \) and \(x = \left\lfloor \frac{n}{q} \right\rfloor - 1 \). Let \(K_{r-x} \) be subgraph of \(K_r \) (blue, green)-coloured without blue \(P_t \) and without green \(C_m \). Such critical colouring exists by \(R(P_t, P_m) = r - x + 1 \). Let other edges of \(K_r \) be coloured with red. The red subgraph does not contain any \(P_q \).

The proof is done.

Now we extend the result of Faudree and Schelp presented above in Theorem 4.

Proposition 10. Let \(t_0 \geq t_1 \geq t_2 \geq \cdots \geq t_k \geq 2 \), \(k \geq 2 \) be integers and \(n = t_0 + \sum_{i=1}^{k} (\left\lfloor \frac{t_i}{2} \right\rfloor - 1) \). Let \(x = 2 \) if \(t_0 = t_1 = t_2 \) and \(2 \nmid t_0 \), and \(x = 0 \) in the opposite case. Then \(R(P_{t_0}, P_{t_1}, P_{t_2}, \ldots, P_{t_k}) \geq n + x \).

Proof. Let \(t_0 = t_1 = t_2 = 2 \) \(\text{and} \ 2 \nmid t_0 \). We define the critical colouring of the graph \(K_{n+x-1} \), with \(x = 2 \). Let \(A, B, C, D, E_j, (j = 3, \ldots, k) \) be sets with \(|A| = |B| = |C| = |D| = \left\lfloor \frac{n}{2} \right\rfloor \) and \(|E_j| = \left\lfloor \frac{t_j}{2} \right\rfloor - 1, (j = 3, \ldots, k) \).

Let the edges with ends in the sets \(A \cup B \) and \(C \cup D \) be coloured with the colour 0, the edges with one end in the set \(A \) and the second one in the set \(C \) be coloured with the colour 1, the edges with one end in the set \(B \) and the second one in the set \(D \) be coloured with the colour 1. Other edges with ends in \(A \cup B \cup C \cup D \) colour with the colour 2. Let \(V_j = A \cup B \cup C \cup D \cup \bigcup_{i=3}^{k} E_i, (j = 3, \ldots, k) \). Let colour the edges with both ends in \(E_j \) or one end in \(E_j \) and the second one in the set \(V_j \) with the colour \(j, (j = 3, \ldots, k) \). Note that the colouring contains no monochromatic \(P_{t_i} \) in the colour \(i \).

If the condition \(t_0 = t_1 = t_2 = 2 \) \(\text{and} \ 2 \nmid t_0 \) does not hold we define the critical colouring of the graph \(K_{n+x-1} \), with \(x = 0 \). Namely, let \(|A| = t_0 + \left\lfloor \frac{t_1}{2} \right\rfloor - 2 \), \(|E_j| = \left\lfloor \frac{t_j}{2} \right\rfloor - 1, (j = 2, \ldots, k) \) and \(V_j = A \cup \bigcup_{i=2}^{k} E_i, (j = 2, \ldots, k) \). Let colour the edges with both ends in \(E_j \) or one end in \(E_j \) and the second one in the set \(V_j \) with the colour \(j, (j = 2, \ldots, k) \). The edges with ends in the set \(A \) colour critically with colours 0 and 1 (it is possible by \(R(P_{t_0}, P_{t_1}) = t_0 + \left\lfloor \frac{t_1}{2} \right\rfloor - 1 \)).

The proof is done.

Now we show some sufficient conditions for \(R(P_{t_0}, P_{t_1}, P_{t_2}, \ldots, P_{t_k}) = n + x \) with \(x = 0 \) or \(x = 2 \) and \(n = t_0 + \sum_{i=1}^{k} (\left\lfloor \frac{t_i}{2} \right\rfloor - 1) \).

Theorem 11. Let \(t_0 \geq t_1 \geq t_2 \geq \cdots \geq t_k \geq 2 \), \(k \geq 2 \) be integers and \(n = t_0 + \sum_{i=1}^{k} (\left\lfloor \frac{t_i}{2} \right\rfloor - 1) \). Let \(x = 2 \) if \(t_0 = t_1 = t_2 \) and \(2 \nmid t_0 \), and \(x = 0 \)
in the opposite case, and let \(r_i = (n + x) \mod (t_i - 1) \) \((i = 0, 1, \ldots, k)\). The sufficient conditions for \(R(P_{t_0}, P_{t_1}, P_{t_2}, \ldots, P_{t_k}) = n + x \) are as follows:

(i) \(t_0 > t_1, \) \(2|t_i \) for each \(i \geq 1 \) and
\[
 t_0 > \max \left\{ \left(\sum_{i=1}^{k} \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) \right)^2 - \sum_{i=1}^{k} \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) \cdot \sum_{i=1}^{k} \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) + 2 \right\},
\]

(ii) \(t_0 > t_1, \) \(2 \not| t_i \) for exactly one \(i \geq 1 \) and
\[
 t_0 > \max \left\{ 2 \left(\sum_{i=1}^{k} \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) + 1 \right)^2 - \sum_{i=1}^{k} \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) \cdot \sum_{i=1}^{k} \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) + 2 \right\},
\]

(iii) \(t_0 \in \{4, 6, 8\} \), \(t_0 = t_1 > t_2 \) and \(t_i = 2 \) for each \(i = 2, \ldots, k \),

(iv) \(t_0 \in \{3, 5\} \), \(t_0 = t_1 > t_2 \) and \(t_i = 2 \) for each \(i = 2, \ldots, k \),

(v) \(t_0 = t_1 = t_2 = 3 > t_3 \) and \(t_i = 2 \) for each \(i = 3, \ldots, k \) or \(t_0 = t_1 = t_2 = t_3 = 3 \) and \(t_i = 2 \) for each \(i = 4, \ldots, k \),

(vi) \(t_i = 2 \) for each \(i = 0, \ldots, k \).

Proof. By Proposition 10 we get the lower bound \(n + x \leq R(P_{t_0}, P_{t_1}, P_{t_2}, \ldots, P_{t_k}) \). Now we prove the upper bound. Evidently, \(0 \leq r_i < t_i - 1 \). By definition of \(n \) and \(r_0 \) we have

\[
(3) \quad \sum_{i=1}^{k} \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) = w \cdot (t_0 - 1) + r_0,
\]

where \(w \geq 0 \) and \(0 \leq r_0 \leq t_0 - 2 \) are integers.

By Theorem 1 we get \(\sum_{i=0}^{k} ex(n + x, P_i) \leq s \), where
\[
s = \frac{n + x}{2} \sum_{i=0}^{k} (t_i - 2) - \frac{1}{2} \sum_{i=0}^{k} r_i(t_i - 1 - r_i).
\]

Let \(g = \left(\left\lfloor \frac{n + x}{2} \right\rfloor \right) - s \). Evidently,

\[
(4) \quad g = \frac{n + x}{2} \left(n + x - 1 - \sum_{i=0}^{k} t_i + 2k + 2 \right) + \frac{1}{2} \sum_{i=0}^{k} r_i(t_i - 1 - r_i).
\]

Note that, \(g > 0 \) is a sufficient condition for \(R(P_{t_0}, P_{t_1}, P_{t_2}, \ldots, P_{t_k}) \leq n + x \).

Let \(y \) be the number of odd \(t_i \), for \(i = 1, \ldots, k \). So

\[
(5) \quad y = \sum_{i=1}^{k} \left(\left\lfloor \frac{t_i}{2} \right\rfloor - \left\lfloor \frac{t_i}{2} \right\rfloor \right).
\]
Let
\[a = r_0 - \left(\sum_{i=1}^{k} \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) + y - 1 - x \right). \]

(6)

Then by the definition of \(n \) we have
\[
\begin{align*}
g &= (a - r_0) \frac{t_0 + \sum_{i=1}^{k} \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) + x}{2} + \frac{1}{2} r_0(t_0 - 1 - r_0) \\
&\quad + \frac{1}{2} \sum_{i=1}^{k} r_i(t_i - 1 - r_i).
\end{align*}
\]

(7)

Hence, by (7) and (6), we get
\[
g = \frac{a}{2} t_0 - \frac{1}{2} \left(\sum_{i=1}^{k} \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) + x \right)^2 + \frac{1}{2} \left(\sum_{i=1}^{k} \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) + x \right)(2x + 1 - y)
\]

(8)

\[- \frac{1}{2} r_0(r_0 + 1) + \frac{1}{2} \sum_{i=1}^{k} r_i(t_i - 1 - r_i). \]

If \(a > 0 \) and \(g > 0 \) then we can find some additional restriction on \(t_i \) to obtain the upper bound of Ramsey number for the sequence of paths.

By (6), the assumption \(a > 0 \) gives
\[
r_0 \geq \sum_{i=1}^{k} \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) + y - x.
\]

(9)

Let us consider three cases.

Case 1. Suppose that \(t_0 > t_1 \). So \(x = 0 \). Thus, by the value of \(n \), we get
\[
r_0 = \sum_{i=1}^{k} \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) + 1.
\]

(10)

By (6), (10) and the assumption \(a > 0 \), we have \(y = 0 \) or \(y = 1 \). Moreover, if \(y = 0 \) then \(a = 2 \) and if \(y = 1 \) then \(a = 1 \).

By (8),
\[
t_0 > \frac{1}{a} \left(r_0(r_0 + 1) + \sum_{i=1}^{k} \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) \right)^2 - (1 - y)\sum_{i=1}^{k} \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right).
\]
is a sufficient condition for \(g > 0 \).

Thus we get \(t_0 > r_0^2 - (r_0 - 1) \) for \(y = 0 \) and \(t_0 > r_0(2r_0 - 1) + 1 \) for \(y = 1 \).

Elementary counting leads to the condition (i) and (ii), respectively.

Case 2. Suppose that \(t_0 = t_1 > t_2 \). Thus \(x = 0 \) and by (8) we get

\[
(11) \quad g = \frac{a + r_0}{2}t_0 - \frac{1}{2} \left(\sum_{i=1}^{k} \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) \right)^2 + \frac{1}{2} (1 - y) \sum_{i=1}^{k} \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) - r_0(r_0 + 1) + \frac{1}{2} \sum_{i=2}^{k} r_i(t_i - 1 - r_i).
\]

If \(a + r_0 > 0 \) and \(g > 0 \) then we can find some further restriction on \(t_i \) to obtain the above Ramsey number for the sequence of paths.

First, by (6) and the assumption \(a + r_0 > 0 \), we note that

\[
(12) \quad r_0 > \frac{1}{2} \left(\sum_{i=1}^{k} \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) + y - 1 \right).
\]

Moreover, by (11), if

\[
(13) \quad t_0 > \frac{1}{a + r_0} \left(2r_0(r_0 + 1) + \left(\sum_{i=1}^{k} \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) \right)^2 - (1 - y) \sum_{i=1}^{k} \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) \right)
\]

then \(g > 0 \).

By definition of \(r_0 \), (3) and (12), we get

\[
(14) \quad t_0 - 2 \geq r_0 \sum_{i=1}^{k} \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) - w \cdot (t_0 - 1) > \frac{1}{2} \left(\sum_{i=1}^{k} \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) + y - 1 \right).
\]

Let us assume that \(w > 0 \). Then, by \(t_0 = t_1 \), we get

\[
(15) \quad \frac{1}{2} \left(\sum_{i=2}^{k} \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) + 2 - y \right) > \left\lfloor \frac{t_0}{2} \right\rfloor + \frac{1}{2} \left\lfloor \frac{t_0}{2} \right\rfloor
\]

\[
> \frac{1}{2} \left(\sum_{i=2}^{k} \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) + y + 2 \right).
\]
The left-side inequality in (15) follows by the right-side inequality from (14). The right-side inequality in (15) follows by the most left and the most right relation in (14). Hence we get a contradiction.

Let us assume that \(w = 0 \). Then, by (3) and \(t_0 = t_1 \), we get \(r_0 = \left\lfloor \frac{t_0}{2} \right\rfloor + \sum_{i=2}^{k} \left(\left\lfloor \frac{t_i}{2} \right\rfloor - 1 \right) \). By (14) we get \(y = 0 \) or \(y = 1 \). So, by (13) and (6), we get \(t_0 > \frac{1}{r_0+1} \left(2r_0(r_0+1) + (r_0-1)(r_0-2+y) \right) \).

Considering the case we get \(t_0 > 3r_0 - 7 + 16/(r_0+2) \) for \(y = 0 \) and \(t_0 > 3r_0 - 3 + 4/(r_0+1) \) for \(y = 1 \). Elementary counting leads to the condition (iii) and (iv), respectively.

Case 3. Suppose that \(t_0 = t_1 = t_2 \). If the condition (v) holds then \(n = 3, x = 2 \). If the condition (vi) holds then \(n = 2, x = 0 \). Thus, by (4), we get \(g > 0 \) for these cases and the result holds. The proof is done.

We conclude with the following result for three paths.

Corollary 12. Let \(m, t, q \) \((m \geq t \geq q \geq 2)\) be positive integers. Let either \(m > \frac{1}{2}((t+q)^2 - 7(t+q)+14) \) and 2 \(\nmid (t+q) \) or \(m > \frac{1}{2}((t+q)^2 - 6(t+q)+12) \) and 2 \| \(t \) and 2 \| \(q \). Then \(R(P_q, P_t, P_m) = m + \left\lfloor \frac{t}{2} \right\rfloor + \left\lfloor \frac{q}{2} \right\rfloor - 2 \).

Proof. If 2 \(\nmid (t+q) \) then we apply Theorem 11 (ii). If 2 \| \(t \) and 2 \| \(q \) then we apply Theorem 11 (i) for \(m > 2 \) and Theorem 11 (vi) for \(m = q = t = 2 \). □

References

Received 13 December 2007
Revised 4 July 2008
Accepted 23 October 2008