PARTITIONS OF A GRAPH INTO CYCLES CONTAINING A SPECIFIED LINEAR FOREST

RYOTA MATSUBARA

Department of Mathematical Information Science
Tokyo University of Science
Tokyo 162–8601, Japan

e-mail: qq8c6dt9n@able.ocn.ne.jp

AND

HAJIME MATSUMURA*

Kyoto Computer Gakuin
Kyoto 601–8407, Japan

e-mail: h_matsumura@kcg.ac.jp

Abstract

In this note, we consider the partition of a graph into cycles containing a specified linear forest. Minimum degree and degree sum conditions are given, which are best possible.

Keywords: partition of a graph, vertex-disjoint cycle, 2-factor, linear forest.

2000 Mathematics Subject Classification: 05C38, 05C99.

1. Introduction

In this paper, we consider only finite undirected graphs without loops or multiple edges. We will generally follow notation and terminology of [2]. For a vertex x of a graph G, the neighborhood of x is denoted by $N_G(x)$ and $d_G(x) = |N_G(x)|$ is the degree of x in G. For a subgraph H of G and

*This work was partially supported by the JSPS Research Fellowships for Young Scientists.
a vertex \(x \in V(G) - V(H) \), we also denote \(N_H(x) = N_G(x) \cap V(H) \) and \(d_H(x) = |N_H(x)| \). For a subset \(S \) of \(V(G) \), we write \(\langle S \rangle \) for the subgraph induced by \(S \). For a subgraph \(H \) of \(G \) and a subset \(S \) of \(V(G) \), \(d_H(S) = \sum_{x \in S} d_H(x) \), \(N_H(S) = \bigcup_{x \in S} N_H(x) \) and define \(G - H = \langle V(G) - V(H) \rangle \) and \(G - S = \langle V(G) - S \rangle \). For a graph \(G \), \(|G| = |V(G)|\) is the order of \(G \), \(\delta(G) \) is the minimum degree of \(G \), and

\[
\sigma_2(G) = \min \{d_G(x) + d_G(y) \mid xy \notin E(G), x, y \in V(G), x \neq y\}
\]

is the minimum degree sum of nonadjacent vertices. (When \(G \) is complete, we define \(\sigma_2(G) = \infty \).)

A forest is a graph each of whose components is a tree and a linear forest is a forest consisting of paths. We regard a single vertex as a path of order 1. For a path \(P = v_1v_2 \cdots v_p \), we call \(v_i \) an internal vertex for \(2 \leq i \leq p - 1 \). If \(P \) is contained in a cycle \(C \) as a subgraph, we denote it by \(P \subset C \).

For graphs \(G \) and \(H \), \(G \cup H \) is the union of \(G \) and \(H \), and \(G + H \) is the join of \(G \) and \(H \). \(K_n \) is a complete graph of order \(n \).

Suppose that \(H_1, \ldots, H_k \) are vertex-disjoint subgraphs such that \(V(G) = \bigcup_{i=1}^{k} V(H_i) \). Then we say \(G \) can be partitioned into \(H_1, \ldots, H_k \) and \(\{H_1, \ldots, H_k\} \) is a partition of \(G \).

Research on partitions of a graph into cycles with a specified number of components was started by Brandt et al.

Theorem 1 (Brandt et al. [1]). Suppose that \(|G| \geq 4k\) and \(\sigma_2(G) \geq |G| \). Then \(G \) can be partitioned into \(k \) cycles.

In this paper, we consider partitions into cycles each of which contains exactly one component of a specified linear forest as a subgraph. In the following, \(n \) always denotes the order of a graph \(G \), and ‘disjoint’ means ‘vertex-disjoint’ because we only deal with partitions of the vertex set.

The special cases where each component of a specified linear forest is a vertex or an edge were considered in several papers [3–11]. In particular, the following theorem was obtained in [7].

Theorem 2 (Enomoto and Matsumura [7]). Suppose that \(n \geq 10p + 10q \), \(p + q \geq 1 \) and either

\[
\delta(G) \geq \max \Bigg\{ \frac{n + q}{2}, \frac{n + p + 2q - 3}{2} \Bigg\},
\]

...
or

\[\sigma_2(G) \geq \max\{n + q, n + 2p + 2q - 2\}. \]

Then for any linear forest with components \(P_1, \ldots, P_{p+q} \) such that \(|P_i| = 1 \) for \(1 \leq i \leq p \) and \(|P_i| = 2 \) for \(p + 1 \leq i \leq p + q \), \(G \) can be partitioned into cycles \(H_1, \ldots, H_{p+q} \) such that \(P_i \subset H_i \).

In this paper, we consider a more general case, that is, we specify not only vertices and edges but also paths of order at least 3. The main result of this paper is the following.

Theorem 3. Suppose that \(n \geq 10p + 10q' \), \(p + q \geq 1 \), \(p \geq 0 \), \(q' \geq q \geq 0 \), and either

\[\delta(G) \geq \max\left\{ \frac{n + q'}{2}, \frac{n + p + q + q' - 3}{2} \right\}, \]

or

\[\sigma_2(G) \geq \max\{n + q', n + 2p + q + q' - 2\}. \]

Then for any linear forest with components \(P_1, \ldots, P_{p+q} \) such that \(|P_i| = 1 \) for \(1 \leq i \leq p \), \(|P_i| \geq 2 \) for \(p + 1 \leq i \leq p + q \) and \(\sum_{i=p+1}^{p+q} |E(P_i)| = q' \), \(G \) can be partitioned into cycles \(H_1, \ldots, H_{p+q} \) such that \(P_i \subset H_i \).

The minimum degree condition in Theorem 3 is sharp in the following sense. (In the following five examples, we let \(m \) be a sufficiently large integer.)

Example 1. Suppose that \(q' \geq q \geq 1 \) and \(p + q \geq 2 \). Let \(G_1 = (K^1_m \cup K^2_m) + K_{p+q+q'-2} \), where \(K^i_m \) is a complete graph of order \(m \) for \(i = 1, 2 \). Take \(p \) distinct vertices \(P_1, \ldots, P_p \) and \(q - 1 \) disjoint paths \(P_{p+1}, \ldots, P_{p+q-1} \) in \(K_{p+q+q'-2} \) such that \(|E(P_i)| \geq 1 \) and \(\sum_{i=p+1}^{p+q-1} |E(P_i)| = q_0 < q' \). Moreover, we take a path \(P_{p+q} \) which connects \(K^1_m \) and \(K^2_m \), \(|E(P_{p+q})| = q' - q_0 \) and all internal vertices are contained in \(K_{p+q+q'-2} \). (If \(q' - q_0 = 1 \), we add an edge \(e \) which connects \(K^1_m \) and \(K^2_m \) directly and let \(P_{p+q} = e \).) Then we cannot take a cycle passing through \(P_{p+q} \) without using vertices in \(\bigcup_{i=1}^{p+q-1} V(P_i) \). Hence \(G_1 \) cannot have the desired partition, while \(\delta(G_1) = (|G_1| + p + q + q' - 4)/2 \).
Example 2. Suppose that \(q = 0 \) and let \(G_2 = K_{m,m+1} \), a complete bipartite graph with partite sets of order \(m \) and \(m + 1 \). Clearly, \(G_2 \) cannot have the desired partition, while \(\delta(G) = (|G_2| - 1)/2 \).

Example 3. Suppose that \(p = 0 \) and \(q' \geq q \geq 1 \) and let \(G_3 = K_{m+q'} + (m+1)K_1 \). Take \(q \) disjoint paths \(P_1, \ldots, P_q \) in \(K_{m+q'} \) so that \(|E(P_i)| \geq 1 \) and \(\sum_{i=1}^{q} |E(P_i)| = q' \). Then \(G_3 \) does not have the desired partition, while \(\delta(G_3) = (|G_3| + q' - 1)/2 \).

Example 4. Suppose that \(p \geq 1 \). Let \(G_4 = (K_p \cup K_m) + K_{2p+q'+q'-1} \). Take \(p \) distinct vertices \(P_1, \ldots, P_p \) in \(K_p \) and \(q \) disjoint paths \(P_{p+1}, \ldots, P_{p+q} \) in \(K_{2p+q'+q'-1} \) so that \(\sum_{i=p+1}^{p+q} |E(P_i)| = q' \). To make a cycle through \(P_i \) for
1 ≤ i ≤ p, we have to use at least 2 vertices in $K_{2p+q+q'-1}$ but only $2p - 1$ vertices are available. Then G_4 cannot have the desired partition, while $\sigma_2(G_4) = |G_4| + 2p + q + q' - 3$.

![Figure 3. The graph G_4.](image)

Example 5. Suppose that $p = 0$ and let $G_5 = (K_1 \cup K_m) + K_{q+q'-1}$. Take $q - 1$ disjoint paths P_1, \ldots, P_{q-1} in $K_{q+q'-1}$ so that $\sum_{i=1}^{q-1} |E(P_i)| = q' - 1$ and an edge P_q connecting K_1 and $K_{q+q'-1}$. Then we cannot take a cycle through P_q without using the vertices of other specified paths. Hence G_5 cannot be partitioned into cycles H_1, \ldots, H_{p+q} such that $P_i \subset H_i$, while $\sigma_2(G_5) = |G_5| + q + q' - 3$.

![Figure 4. The graph G_5.](image)

The graphs G_2 and G_3 show that the condition ‘$\sigma_2(G) \geq n + q''$ cannot be dropped because $\sigma_2(G_2) = |G_2| - 1$ and $\sigma_2(G_3) = |G_3| + q' - 1$.

For the case where each component of a specified linear forest is a path of order at least 3, the degree sum condition of Theorem 3 is not sharp and we prove the following.
Theorem 4. Suppose that \(n \geq 3q + q', q \geq 1, q' \geq 2q \) and
\[
\sigma_2(G) \geq \max\{n + q', n + q + q' - 3\}.
\]
Then for any disjoint paths of order at least 3 \(P_1, \ldots, P_q \) such that \(\sum_{i=1}^{q} |E(P_i)| = q' \), \(G \) can be partitioned into cycles \(H_1, \ldots, H_q \) such that \(P_i \subset H_i \).

The graph \(G_1 \) shows the sharpness of the degree sum condition in Theorem 4, because \(\sigma_2(G_1) = |G_1| + p + q + q' - 4 \).

To prove Theorem 4, we prove the following theorem, which deals with the case where all paths are of order 3.

Theorem 5. Suppose that \(n \geq 5q, q \geq 1 \) and
\[
\sigma_2(G) \geq \max\{n + 2q, n + 3q - 3\}.
\]
Then for any disjoint paths of order 3 \(P_1, \ldots, P_q \), \(G \) can be partitioned into cycles \(H_1, \ldots, H_q \) such that \(P_i \subset H_i \).

We can prove Theorems 3 and 4 similarly. The proof of Theorem 3 is given in the next section. Before proving Theorem 4, we will give a proof of Theorem 5 in Section 3. We will prove Theorem 4 in Section 4.

2. Proof of Theorem 3

Let \(\{p_i\} = V(P_i) \) for \(1 \leq i \leq p \) and \(x_i \) and \(y_i \) be endvertices of \(P_i \) for \(p + 1 \leq i \leq p + q \).

We generate a new graph \(G' \) from \(G \) by deleting all internal vertices of \(P_i \) and adding the edge \(x_iy_i \) if \(x_iy_i \notin E(G) \) for \(p + 1 \leq i \leq p + q \). Then
\[
\delta(G') \geq \max\left\{ \frac{n + q'}{2}, \frac{n + p + q + q' - 3}{2} \right\} - (q' - q)
\]
\[
= \max\left\{ \frac{(n - q' + q) + q}{2}, \frac{(n - q' + q) + p + 2q - 3}{2} \right\}
\]
\[
= \max\left\{ \frac{|G'| + q}{2}, \frac{|G'| + p + 2q - 3}{2} \right\}.
\]
and
\[
\sigma_2(G') \geq \max\{n + q', n + 2p + q + q' - 2\} - 2(q' - q) \\
= \max\{(n - q' + q) + q, (n - q' + q) + 2p + 2q - 2\} \\
= \max\{|G'| + q, |G'| + 2p + 2q - 2\}.
\]

Moreover, \(|G'| \geq 10p + 10q' - (q' - q) = 10p + 9q' + q \geq 10p + 10q\). Hence by Theorem 2, \(G'\) can be partitioned into cycles \(H_1', \ldots, H_{p+q}'\) such that \(p_i \in V(H_i')\) for \(1 \leq i \leq p\) and \(x_i, y_i \in E(H_i')\) for \(p + 1 \leq i \leq p + q\).

If we replace \(x_i, y_i\) by \(P_i\), then we get a cycle \(H_i\) from \(H_i'\) for \(p + 1 \leq i \leq p + q\) and \(\{H_1, \ldots, H_{p+q}\}\) is the desired partition of \(G\).

3. Proof of Theorem 5

To prove Theorem 5, we first prove the following theorem.

Theorem 6. Suppose that \(n \geq 5q, q \geq 1\) and \(\sigma_2(G) \geq n + 3q - 3\). Then for any disjoint paths of order 3 \(P_1, \ldots, P_q\), \(G\) contains \(q\) disjoint cycles \(C_1, \ldots, C_q\) such that \(P_i \subset C_i\) and \(|C_i| \leq 5\).

To complete the proof of Theorem 5, we use the following theorem.

Theorem 7 (Egawa et al. [4]). Suppose that \(q \geq 1\), \(\sigma_2(G) \geq n + q\) and \(C_1, \ldots, C_q\) are disjoint subgraphs such that \(C_i\) is a cycle or \(K_2\) and \(e_i \in E(C_i)\) for \(1 \leq i \leq q\). Then there exist disjoint subgraphs \(H_1, \ldots, H_q\) such that \(V(G) = \bigcup_{i=1}^{q} V(H_i), e_i \in E(H_i)\) and \(H_i\) is a cycle if \(C_i\) is a cycle and \(H_i\) is a cycle or \(K_2\) if \(C_i\) is \(K_2\) for \(1 \leq i \leq q\).

3.1. Proof of Theorem 6

A cycle \(C\) is called *admissible* if \(P_i \subset C\) for some \(i, 1 \leq i \leq q\), \(|V(C) \cap \bigcup_{i=1}^{q} V(P_i)| = 3\) and \(|C| \leq 5\). For \(1 \leq r \leq q\), a set of cycles \(\{C_1, \ldots, C_r\}\) is *admissible* if each \(C_i\) is admissible, and \(C_i\) and \(C_j\) are disjoint if \(i \neq j\).

If we say ‘\(r\) admissible cycles’, then it means that the set of these \(r\) cycles is admissible. A set of admissible cycles \(\{C_1, \ldots, C_r\}\) is *minimal* if there exist no \(r\) admissible cycles \(P_1, \ldots, P_r\) such that \(|\bigcup_{i=1}^{r} V(P_i)| < |\bigcup_{i=1}^{r} V(C_i)|\).

Let \(G\) be an edge-maximal counterexample and \(P_i = x_i, y_i, z_i\) for \(1 \leq i \leq q\). Clearly, \(G\) is not complete. Let \(x\) and \(y\) be nonadjacent vertices of \(G\) and
define $G' = G + xy$, the graph obtained from G by adding the edge xy.

Then G' is no longer a counterexample and G' has q admissible cycles.

Since G is a counterexample, the edge xy is contained in some admissible cycle. This implies that G contains $q - 1$ admissible cycles and we take minimal admissible cycles C_1, \ldots, C_{q-1}. Without loss of generality, we may assume that $P_i \subset C_i$ for $1 \leq i \leq q - 1$. Let $L = (\bigcup_{i=1}^{q-1} V(C_i))$, $M = G - L$ and $D = M - V(P_q)$. Note that $x_q z_q \notin E(G)$ and $N_D(x_q) \cap N_D(z_q) = \emptyset$. If possible, we take C_1, \ldots, C_{q-1} so that $d_D(x_q) > 0$ and $d_D(z_q) > 0$.

Claim 1. We have $d_D(x_q) > 0$ and $d_D(z_q) > 0$.

Proof. We first remark that we can take C_1, \ldots, C_{q-1} so that $d_D(x_q) > 0$. To see this, suppose that $d_D(x_q) = 0$ and take any $y \in V(D)$. Since

$$d_M(x_q) + d_M(y) \leq 1 + |M| - 2 = |M| - 1,$$

we have

$$d_L(x_q) + d_L(y) \geq n + 3q - 3 - (|M| - 1) = |L| + 3q - 2$$

$$= \sum_{i=1}^{q-1} |C_i| + 3q - 2 > \sum_{i=1}^{q-1} (|C_i| + 3).$$

Hence

$$d_{C_i}(x_q) + d_{C_i}(y) \geq |C_i| + 4$$

holds for some i, $1 \leq i \leq q - 1$.

If $|C_i| = 3$, then this inequality cannot hold. Hence $|C_i| \geq 4$. Without loss of generality, we may assume that $i = 1$.

Suppose that $|C_1| = 4$ and let $C_1 = x_1 y_1 z_1 v x_1$. Note that $N_{C_1}(x_q) = N_{C_1}(y) = V(C_1)$. If we take $D_1 = x_1 y_1 z_1 y x_1$ and let $D_i = C_i$ for $2 \leq i \leq q - 1$, then $\{D_1, \ldots, D_{q-1}\}$ is also minimal admissible and x_q can have a neighbor in $G - \bigcup_{i=1}^{q-1} V(D_i)$ because $x_q v \in E(G)$.

Next suppose that $|C_1| = 5$ and let $C_1 = x_1 y_1 z_1 v x_1$. If $\{x_1, z_1\} \subset N_{C_1}(y)$, then we can find a shorter admissible cycle passing through P_1. Hence we have $d_{C_1}(y) = 4$. By symmetry, we may assume that $N_{C_1}(y) = \{y_1, z_1, v, u\}$. Then $N_{C_1}(x_q) = V(C_1)$. If we take $D_1 = z_1 y_1 x_1 u y z_1$ and let $D_i = C_i$ for $2 \leq i \leq q - 1$, then $\{D_1, \ldots, D_{q-1}\}$ is minimal admissible and
can have a neighbor in $G - \bigcup_{i=1}^{q-1} V(D_i)$ because $x_qv \in E(G)$. Hence we may assume that $d_D(x_q) > 0$.

Now suppose that the claim is false. In view of the remark made at the beginning of the proof, we may assume that $d_D(x_q) > 0$ and $d_D(z_q) = 0$. Take $z \in N_D(x_q)$ and $y \in V(D) - \{z\}$. Arguing as above, we see that there exists j such that $d_{C_j}(z_q) + d_{C_j}(y) \geq |C_j| + 4$ and we can take admissible cycles D_1, \ldots, D_{q-1} so that $\{D_1, \ldots, D_{q-1}\}$ is minimal admissible and z_q can have a neighbor in $G - \bigcup_{i=1}^{q-1} V(D_i)$. But this contradicts the choice of C_1, \ldots, C_{q-1} mentioned immediately before the statement of Claim 1.

Take any $z \in N_D(x_q)$ and $w \in N_D(z_q)$. Note that $\{zw, xqw, zqw\} \cap E(G) = \emptyset$, $N_D(x_q) \cap N_D(w) = \emptyset$, and $N_D(z_q) \cap N_D(z) = \emptyset$. (It may occur $\{yqz, yqw\} \cap E(G) \neq \emptyset$.)

Let $S = \{x_q, z_q, z, w\}$. Since

$$d_M(S) \leq 8 + 2(|M| - 5) = 2|M| - 2,$$

we have

$$d_L(S) \geq 2(n + 3q - 3) - (2|M| - 2) = 2|L| + 6q - 4$$

$$= \sum_{i=1}^{q-1} 2|C_i| + 6q - 4 > \sum_{i=1}^{q-1} (2|C_i| + 6).$$

This means that

$$d_{C_i}(S) \geq 2|C_i| + 7$$

for some i, $1 \leq i \leq q$.

If $|C_i| = 3$, then this inequality cannot hold. Hence $|C_i| \geq 4$.

Suppose that $|C_i| = 4$ and let $C_i = x_iy_i z_i z_i x_i$. By symmetry, we may assume that $N_{C_i}(x_q) = N_{C_i}(z) = V(C_i)$. Then $v \notin N_{C_i}(z_q) \cup N_{C_i}(w)$, because otherwise we can find two admissible cycles. But this means that $d_{C_i}(S) \leq 14$, a contradiction.

Next, suppose that $|C_i| = 5$ and let $C_i = x_i y_i z_i v v x_i$. If $d_{C_i}(z) = 5$, then we can find an admissible cycle $x_i y_i z_i z_i x_i$, which is shorter than C_i. Hence $d_{C_i}(z) \leq 4$. Similarly, $d_{C_i}(w) \leq 4$. If $(N_{C_i}(x_q) \cap N_{C_i}(z_q)) \cap \{v, w\} \neq \emptyset$, we can also find shorter admissible cycle passing through P_q. Hence $d_{C_i}(x_q) + d_{C_i}(z_q) \leq 8$. But this implies that $d_{C_i}(S) \leq 16$, a contradiction.

This completes the proof of Theorem 6.
3.2. Proof of Theorem 5

By Theorem 6, there exist disjoint cycles \(C_1, \ldots, C_q \) such that \(P_i \subseteq C_i \). Let \(P_i = x_iz_iy_i \) for \(1 \leq i \leq q \).

We make \(G' \) from \(G \) by deleting \(\{y_1, \ldots, y_q\} \) and adding the edge \(x_iz_i \) for \(1 \leq i \leq q \) if \(x_iz_i \notin E(G) \). Then we have disjoint subgraphs \(C'_1, \ldots, C'_q \) of \(G' \) such that \(x_iz_i \in E(C'_i) \), and \(C'_i \) is a cycle if \(|C_i| \geq 4 \), and \(C'_i \) is \(K_2 \) if \(|C_i| = 3 \). Moreover,

\[
\sigma_2(G') \geq \max\{n + 3q - 3, n + 2q\} - 2q \\
= \max\{(n - q) + 2q - 3, (n - q) + q\} \\
= \max\{|G'| + 2q - 3, |G'| + q\} \geq |G'| + q.
\]

Hence by Theorem 7, there exist disjoint subgraphs \(H'_1, \ldots, H'_q \) satisfying \(V(G') = \bigcup_{i=1}^q V(H'_i) \), \(x_iz_i \in E(H'_i) \) for \(1 \leq i \leq q \) and \(H'_i \) is a cycle if \(C'_i \) is a cycle and \(H'_i \) is a cycle or \(K_2 \) if \(C'_i \) is \(K_2 \).

By replacing the edge \(x_iz_i \) by \(P_i \), we make a cycle \(H_i \) from \(H'_i \) for \(1 \leq i \leq q \). Then \(\{H_1, \ldots, H_k\} \) is the desired partition of \(G \).

This completes the proof of Theorem 5.

4. Proof of Theorem 4

Let \(P_i = x_iz_iy_i \) for \(1 \leq i \leq q \). We make \(G' \) from \(G \) by deleting all internal vertices except \(z_i \) of \(P_i \) and adding the edge \(z_iz_iy_i \) if \(z_iz_iy_i \notin E(G) \) for \(1 \leq i \leq q \). Then

\[
\sigma_2(G) \geq \max\{n + q', n + q + q' - 3\} - 2(q' - 2q) \\
\geq \max\{(n - q') + 2q, (n - q') + 2q + 3q - 3\} \\
\geq \max\{|G'| + 2q, |G'| + 3q - 3\}.
\]

Moreover, \(|G'| \geq 3q + q' - (q' - 2q) = 5q \). Hence by Theorem 5, \(G' \) can be partitioned into cycles \(H'_1, \ldots, H'_q \) such that \(P'_i \subseteq H'_i \) for \(1 \leq i \leq q \), where \(P'_i = x_iz_iz_iy_i \).

We replace \(P'_i \) by \(P_i \) and get a cycle \(H_i \) from \(H'_i \) for \(1 \leq i \leq q \). Then \(\{H_1, \ldots, H_k\} \) is the desired partition of \(G \).

This completes the proof of Theorem 4.
References

Received 2 October 2006
Revised 5 February 2007
Accepted 5 February 2007