A NOTE ON THE RAMSEY NUMBER AND THE PLANAR RAMSEY NUMBER FOR C_4 AND COMPLETE GRAPHS

HALINA BIELAK

Institute of Mathematics UMCS
M. Curie-Skłodowska University
Lublin, Poland

e-mail: hbiel@golem.umcs.lublin.pl

Abstract

We give a lower bound for the Ramsey number and the planar Ramsey number for C_4 and complete graphs. We prove that the Ramsey number for C_4 and K_7 is 21 or 22. Moreover we prove that the planar Ramsey number for C_4 and K_6 is equal to 17.

Keywords: planar graph, Ramsey number.

1991 Mathematics Subject Classification: 05C55.

1 Introduction

Let F, G, H be simple graphs with at least two vertices. The Ramsey number $R(G, H)$ is the smallest integer n such that in arbitrary two-colouring (say red and blue) of K_n a red copy of G or a blue copy of H is contained (as subgraphs).

Let the planar Ramsey number $PR(G, H)$ be the smallest integer n such that any planar graph on n vertices contains a copy of G or its complement contains a copy of H.

So we have an immediate inequality between planar and ordinary Ramsey number, i.e., $PR(G, H) \leq R(G, H)$.

Walker in [9] and Steinberg and Tovey in [8] studied the planar Ramsey number but only in the case when both graphs are complete.

In this paper we will only consider the case when G is a cycle C_4 of order 4 and H is a complete graph K_t of order t. In that case one can say that the Ramsey number is the smallest integer n such that any graph on n vertices contains a copy of C_4 or an independent set of cardinality t. The
problem for the case when \(G \), i.e., the first graph of the pair, is a cycle has been studied by J.A. Bondy, P. Erdős in [3] and by P. Erdős, R.J. Faudree, C.C. Rousseau, R.H. Schelp in [6]. We give a lower bound for the Ramsey number and the planar Ramsey number for \(C_4 \) and complete graphs. We prove that the Ramsey number for \(C_4 \) and \(K_7 \) is 21 or 22.

Moreover in Theorem 6 we prove that \(PR(C_4, K_6) = 17 \).

A graph \(F \) is said to be a \((G, K_t)\)-Ramsey-free graph if it does not contain any copy of \(G \) and any independent set of cardinality \(t \). For graphs \(G, H \) the symbol \(G \cup H \) denotes a disjoint union of graphs, \(tG \) a disjoint union of \(t \) copies of the graph \(G \), \(\overline{G} \) a complement of \(G \), \(G - S \) a subgraph of \(G \) induced by a subset \(V(G) - S \) of the vertices of \(G \) where \(S \subseteq V(G) \), and \(G \supset H \) express the fact that a graph \(H \) is a subgraph of \(G \). Then \(\deg_G(x) \) denotes the degree of the vertex \(x \) in the graph \(G \), and \(\delta(G) \) is the minimum vertex degree over all vertices of \(G \). Moreover \(N(x) \) is the set of vertices adjacent to \(x \), and \(N[x] \) is the closed neighbourhood, i.e., \(N[x] = N(x) \cup \{x\} \).

The following theorems summarises the results for ordinary and planar Ramsey numbers known so far referring to the cases when the first graph is a cycle of order 4 and the second one is a complete graph.

Theorem 1 [4], [5], [7].
(i) \(R(C_4, K_3) = 7; \)
(ii) \(R(C_4, K_4) = 10; \)
(iii) \(R(C_4, K_5) = 14; \)
(iv) \(R(C_4, K_6) = 18. \)

Theorem 2 [1].
(i) \(PR(C_4, K_3) = 7; \)
(ii) \(PR(C_4, K_4) = 10; \)
(iii) \(PR(C_4, K_5) = 13. \)

2 Main Results

We use the following lemma to prove some further results for the Ramsey and the planar Ramsey number of pair of graphs.

Lemma 3 [2]. Let \(G \) be a graph of order 17 with independence number less than 6 and without \(C_4 \). Then \(G \) is isomorphic to one of the graphs presented in Figure 1.

Therefore we have the following simple general observation.
A Note on the Ramsey Number and ...
Figure 1. Graphs of order 17 without C_4 and with $\alpha(G) < 6.$
Proposition 4. For each integer $t \geq 6$, $R(C_4, K_{t+1}) \geq 3t + 2[\frac{t}{3}] + 1$.

Proof. Let H be a graph of order 17 presented in Figure 1. Note that H does not contain any subgraph C_4 and $\alpha(H) = 5$. Therefore $[\frac{t}{5}]H \cup (t - [\frac{t}{5}]5)K_3$, $t \geq 5$, shows that $R(C_4, K_{t+1}) \geq 3t + 2[\frac{t}{3}] + 1.$

Theorem 5. $21 \leq R(C_4, K_7) \leq 22.$

Proof. Immediately by Proposition 4 we get $21 \leq R(C_4, K_7)$. Suppose for the contrary that $R(C_4, K_7) > 22$. Let G be a (C_4, K_7)-Ramsey-free graph of order 22. Note that $\delta(G) < 5$, else a C_4 should be a subgraph of G.

Let m be an arbitrary vertex of G of the minimum degree $\delta(G)$.

Suppose that $\delta(G) \leq 3$. Then deleting a 3-degree vertex m and all its neighbours we get a graph F of the order at least 18. By Theorem 1(iv) the graph F contains an independent set S of cardinality 6. Thus $S \cup \{m\}$ is an independent set of cardinality 7, a contradiction.

Therefore $\delta(G) = 4$. Let m_i, $i = 1, 2, 3, 4$ be the neighbours of m in G. Let us consider the graph F obtained from G by deleting the vertex m and all its neighbours. Since G does not contain any C_4 then by degree condition each m_i, $i = 1, 2, 3, 4$ has at least two neighbours in F. Evidently the order of F equals 17 and F must be isomorphic to one of the (C_4, K_6)-Ramsey-free graphs presented in Figure 1 (else we get a contradiction as before).

Suppose that F is isomorphic to H_1 or H_2. Since the vertex w has degree 3 in F then it must be adjacent to one of the neighbours of m, say m_1. Let us consider the graph $Y = G - N[w]$. Note that the vertex m has degree 3 in Y. Hence Y must be one of the (C_4, K_6)-Ramsey-free graphs H_1 or H_2 presented in Figure 1. Evidently m is not adjacent to any vertex of the set $\{d, v, b, h\}$. Therefore each of the four vertices must be adjacent to a vertex of the set $\{m_2, m_3, m_4\}$. It is impossible without creating C_4 because each two vertices of the set $\{d, v, b, h\}$ are at distance 2. A contradiction. Therefore we can assume that F is not isomorphic to H_i, $i = 1, 2$.

Suppose that F is isomorphic to B_1. Let the vertex x be adjacent to m_1. Then $1m_1 \in E(G)$, else $\deg(m_1) < 4$. Moreover without loss of generality $m_1m_2 \in E(G)$. Note that $\deg(m_1) = 4$. So we consider the graph $Y = G - N[m_1]$. Since Y cannot be isomorphic to H_i, $i = 1, 2$ then each of the vertices of the set $\{2, 3, 4, 5\}$ must be adjacent to m_3 or m_4 and we get C_4, a contradiction. Therefore $xm_1 \notin E(G)$, for $i = 1, 2, 3, 4$. By symmetry, $ym_i \notin E(G)$, for $i = 1, 2, 3, 4$.

Suppose that f is adjacent to m_1. Since C_4 cannot be a subgraph then b, v, e or 4 is not adjacent to m_i, $i = 2, 3, 4$. Therefore $\deg(m_1) > 4$, else
the graph $G - N[m_1]$ has a 3-degree vertex, so it should be isomorphic to H_i, $i = 1, 2$ and we get a case above. Then m_1 should be adjacent to 3 and h, and without loss of generality $m_1m_2 \in E(G)$. Note that m_2 can be adjacent to one of the vertices $d, 1$ or u. So $\deg(m_2) < 4$ or a C_4 exists, a contradiction.

Hence $fm_i \notin E(G)$, for $i = 1, 2, 3, 4$. By symmetry $bm_i \notin E(G)$, for $i = 1, 2, 3, 4$.

If the vertex 2 is adjacent to m_1 then $\deg(m_1) > 4$, else $G - N[m_1]$ has a 3-degree vertex, and we get a case above. Then m_1 must be adjacent to e and to one of g, u. Moreover without loss of generality $m_1m_2 \in E(G)$. Note that $\deg(m_2) < 4$ or a C_4 exists, a contradiction.

Hence $2m_i \notin E(G)$, for $i = 1, 2, 3, 4$. By symmetry $cm_i \notin E(G)$, for $i = 1, 2, 3, 4$.

Similar arguments give that 5 and h cannot be adjacent to m_i, $i = 1, 2, 3, 4$.

Now without loss of generality we can assume that m_1, m_2 and u create an independent set. Therefore $\{m_1, m_2, 2, 5, y, f, u\}$ is an independent set.

Suppose that F is isomorphic to B_2. Let g be adjacent to m_1. Then m_1 must be adjacent to 3 and y, and without loss of generality $m_1m_2 \in E(G)$, else the graph $G - N[m_1]$ has a 3-degree vertex, so it should be isomorphic to H_i, $i = 1, 2$ and we get a case above. So m_2 must be adjacent to 4 and e, and it has degree four. Therefore the vertices 5, b, u, f must be adjacent to m_3 or m_4, else we get a 3-degree vertex in $G - N[m_2]$. Without loss of generality we can assume that the vertex m_3 is adjacent to b, f, and the vertex m_4 is adjacent to 5, u. Note that m_4 has only these two neighbours in B_2. Hence m_4 must be adjacent to m_3 and $\deg(m_4) = 4$. Since h cannot be adjacent to m_i, $i = 1, 2, 3, 4$ the graph $G - N[m_4]$ has a 3-degree vertex and we get a case above.

Hence $gm_i \notin E(G)$, for $i = 1, 2, 3, 4$. By symmetry $ym_i \notin E(G)$, for $i = 1, 2, 3, 4$.

Let 2 be adjacent to m_1. Then m_1 should be adjacent to one of the vertices u, a, b. So the graph $G - N[m_1]$ contains a 3-degree vertex g or y, and we get a case above. Hence $2m_i \notin E(G)$, for $i = 1, 2, 3, 4$. By symmetry $cm_i \notin E(G)$, for $i = 1, 2, 3, 4$.

Now without loss of generality we can assume that m_1, m_2 and 4 create an independent set. Therefore $\{m_1, m_2, 4, c, 2, g, y\}$ is an independent set.

Suppose that F is isomorphic to B_3. Let d be adjacent to m_1. Then m_1 must be adjacent to one of the vertices 3, b, g, h, and without loss of generality
$m_1m_2 \in E(G)$. Since $\text{deg}(m_1) = 4$ and m_2 cannot be adjacent to $3,h,f,u$, then the graph $G - N[m_1]$ has a 3-degree vertex, and we get a case above.

Hence $dm_i \notin E(G)$, for $i = 1,2,3,4$. By symmetry $gm_i \notin E(G)$, for $i = 1,2,3,4$.

Let a be adjacent to m_1. Then m_1 must be adjacent to one of the vertices $u,f,4$. As before $\text{deg}(m_1) = 4$. Note that one of the vertices $2,b,h,y$ has 3-degree in $G - N[m_1]$, and we get a case above.

Hence a and 4 (by symmetry) cannot be adjacent to m_i, $i = 1,2,3,4$. Now without loss of generality we can assume that m_1, m_2 and 1 create an independent set. Therefore $\{m_1, m_2, 1, 4, a, d, g\}$ is an independent set.

All cases lead to a contradiction.

For the planar case we get the following theorem.

Theorem 6. $PR(C_4, K_6) = 17$.

Proof. Since by Lemma 3 each (C_4, K_6)-Ramsey-free graph of order 17 is not planar and $R(C_4, K_6) = 18$ we get $PR(C_4, K_6) \leq 17$. The graph presented in Figure 2 is (C_4, K_6)-Ramsey-free planar graph. So $PR(C_4, K_6) > 16$.

![Figure 2](image-url)

Figure 2. A planar graph of order 16 with independence number less than 6 and without C_4.

Proposition 7. For each integer $t \geq 5$, $PR(C_4, K_{t+1}) \geq 3t + \left\lfloor \frac{t}{3} \right\rfloor + 1$.
Proof. Let \(H \) be a graph of order 16 presented in Figure 2. Note that \(H \) does not contain any subgraph \(C_4 \) and \(\alpha(H) = 5 \). Therefore \(\left\lceil \frac{t}{5} \right\rceil H \cup (t - \left\lfloor \frac{t}{5} \right\rfloor)K_3, \ t \geq 6, \) shows that \(PR(C_4, K_{t+1}) \geq 3t + \left\lceil \frac{t}{5} \right\rceil + 1. \) □

Added in Proof. The result cited in Lemma 3 can be also find in: C.J. Jayawardene, C.C. Rousseau, An upper bound for Ramsey number of a quadrilateral versus a complete graph on seven vertices, Congressus Numerantium 130 (1998) 175–188.

References

Received 20 January 1999
Revised 4 October 1999