POWER-ORDERED SETS

MARTIN R. GOLDESTERN

Technische Universität Wien
Institut für Algebra und Computermathematik
Wiedner Hauptstraße 8–10/118, A–1040 Wien, Austria

e-mail: martin.goldstern@tuwien.ac.at
http://www.tuwien.ac.at/goldstern/

AND

DIETMAR SCHWEIGERT

FB Mathematik, Universität Kaiserslautern
Postfach 3049, D–67653 Kaiserslautern, Germany

e-mail: schweigert@mathematik.uni-kl.de
http://www.mathematik.uni-kl.de/~schweige/

Abstract

We define a natural ordering on the power set \(\mathcal{P}(Q) \) of any finite partial order \(Q \), and we characterize those partial orders \(Q \) for which \(\mathcal{P}(Q) \) is a distributive lattice under that ordering.

Keywords: partial order, chain, linear order, antichain, power set, power-ordered set, distributive lattice, anti-automorphism.

2000 AMS Mathematics Subject Classifications: 06A06, 06A10.

1. Introduction

For an unstructured set \(X \), the power set \(\mathcal{P}(X) \), equipped with the partial order of inclusion, is a Boolean algebra. When we consider a partially ordered (finite) set \((Q, \leq) \), there is another (perhaps more natural) ordering on \(\mathcal{P}(Q) \):
For $A, B \subseteq Q$, let $A \leq B$ iff there is a 1-1 map $\pi : A \to B$ with $a \leq \pi(a)$ for all $a \in A$.

(For infinite sets this relation \leq is in general not antisymmetric.)

We call the structure $(\mathcal{P}(Q), \leq)$ a “power-ordered set”. We will show that $(\mathcal{P}(Q), \leq)$ is a distributive lattice iff Q is a chain or a horizontal sum (see Definition 3.1) of chains. We also remark that the complement operation on $\mathcal{P}(X)$ is an involutory anti-automorphism of $(\mathcal{P}(Q), \leq)$.

2. Powers of chains

Let L be a linear order. We will show that $\mathcal{P}(L)$ is a distributive lattice. Our proof also gives an explicit description of the lattice operations of the power-ordered set $\mathcal{P}(L)$ by representing $\mathcal{P}(L)$ as a sublattice of a product of chains.

Setup 2.1. Let L be a linear order, $n \in \{1, 2, \ldots\}$. Let $-\infty \notin L$, and let $\bar{L} := \{-\infty\} \cup L$, with the obvious order.

Let $L^{(n)}$ be the set of all n-tuples $(x_1, \ldots, x_n) \in \bar{L}^n$ which satisfy:

- $x_1 \geq x_2 \geq \cdots \geq x_n$;
- for all $\ell \in \{1, \ldots, n-1\}$: if $x_\ell \neq -\infty$, then $x_\ell > x_{\ell+1}$.

That is, we consider all strictly decreasing k-tuples from L, for $0 \leq k \leq n$, but we make them into n-tuples by appending the necessary number of copies of $-\infty$.

Fact 2.2. Let $L, \bar{L}, L^{(n)}$ be as above. Then

- \bar{L}^n, as a product of distributive lattices, is again a distributive lattice
- $L^{(n)}$ is a sublattice of \bar{L}^n.

Lemma 2.3. Let L be a finite linear order.

1. Let $D, E \subseteq L$ be nonempty sets of the same cardinality. Then we can inductively analyse the relation $D \leq E$ in the power-ordered set $\mathcal{P}(L)$ as follows:
\[D \leq E \iff (D \setminus \{\max D\}) \leq (E \setminus \{\max E\}) \text{ and } \max D \leq \max E; \]

2. If \(D \) and \(E \) are enumerated in decreasing order by \(d_1 > \cdots > d_k \) and \(e_1 > \cdots > e_k \), respectively, then
\[D \leq E \iff d_1 \leq e_1 \& \cdots \& d_k \leq e_k. \]

Proof.

Proof of (1): \(\Leftarrow \) is clear. Conversely, assume that \(\pi \) witnesses \(D \leq E \).

Define a function \(\hat{\pi} : D \to E \) as follows: if \(\pi(\max D) = \max E \), then \(\hat{\pi} = \pi \). Otherwise, let \(\pi(x_0) = \max E \), for some (unique) \(x_0 \in D \setminus \{\max D\} \) and let \(y_0 = \pi(\max D) \). Define \(\hat{\pi}(x_0) = y_0 \), \(\hat{\pi}(\max D) = \max E = \pi(x_0) \), and \(\hat{\pi}(x) = \pi(x) \) otherwise.

Then also \(\hat{\pi} \) witnesses \(D \leq E \). [Why? We have to check \(x_0 \leq \hat{\pi}(x_0) \). This follows from \(x_0 \leq \max D \leq \pi(\max D) = \hat{\pi}(x_0) \).] Moreover, we have \(\hat{\pi}(\max D) = \max E \). Now let \(\pi_0 : D \setminus \{\max D\} \to E \setminus \{\max E\} \) be the restriction of \(\pi \). Then \(\pi_0 \) witnesses \((D \setminus \{\max D\}) \leq (E \setminus \{\max E\}) \).

Proof of (2) : This follows from (1) by induction.

Fact 2.4. If \(E \subseteq L \), and \(E \) is enumerated in decreasing order by \(e_1 > \cdots > e_k \), then:

1. for any \(\ell \leq k \), every \(\ell \)-element subset of \(E \) is \(\leq \{e_1, \ldots, e_\ell\} \);
2. for any \(\ell \leq k \), and any \(\ell \)-element set \(D \subseteq L \), we have \(D \leq E \iff D \leq \{e_1, \ldots, e_\ell\} \).

This fact allows us to reduce the question “\(A \leq B \)” to a question “\(A \leq B' \)” where \(B' \) has the same number of elements as \(A \). Lemma 3.3 can then be used to compare \(A \) and \(B' \):

Conclusion 2.5. Let \(L \) be a finite linear order with \(n \) elements, and let \(L^{(n)} \) be defined as above. Then \(\mathfrak{P}(L) \) is (as a partial order, hence also as a lattice) isomorphic to \(L^{(n)} \).

So \(\mathfrak{P}(L) \) is a distributive lattice.

We can compute meet and join in \(\mathfrak{P}(L) \) as follows: If \(D = \{d_1, \ldots, d_\ell\} \subseteq L \) and \(E = \{e_1, \ldots, e_\ell\} \subseteq L \), both in decreasing order, and \(\ell \leq k \), then
• $D \land E = \{d_1 \land e_1, \ldots, d_\ell \land e_\ell\}$;

• $D \lor E = \{d_1 \lor e_1, \ldots, d_\ell \lor e_\ell, e_{\ell+1}, \ldots, e_k\}$.

Proof. The map $h : (x_1, \ldots, x_n) \mapsto \{x_1, \ldots, x_n\} \setminus \{-\infty\}$ is a bijection from $L^{(n)}$ onto $\mathcal{P}(L)$. We have to check that h and h^{-1} preserve order:

Let $(d_1, \ldots, d_n), (e_1, \ldots, e_n) \in L^{(n)}$, and let $D := h(d_1, \ldots, d_n)$, $E := h(e_1, \ldots, e_n)$. If $(d_1, \ldots, d_n) \leq (e_1, \ldots, e_n)$ in the product partial order, then the map $\pi : D \to E$ defined by $\pi(d_i) = e_i$ for $d_i \neq -\infty$ witnesses $D \leq E$.

(Note that $d_i \neq -\infty$ implies $e_i \neq -\infty$.)

Conversely, if $D \leq E$, then Lemma 2.3 and Fact 2.4 show that $(d_1, \ldots, d_n) \leq (e_1, \ldots, e_n)$.

3. Sums of chains

Definition 3.1. Let (Q_1, \leq_1) and (Q_2, \leq_2) be disjoint partially ordered sets. The “horizontal sum” of Q_1 and Q_2 is the following partial order (Q, \leq):

$$Q = Q_1 \cup Q_2, \text{ and } \leq = \leq_1 \cup \leq_2, \text{ i.e., } x \leq y \text{ in } Q \text{ iff for some }$$

$$\ell \in \{1, 2\} \text{ we have: } x, y \in Q_\ell \text{ and } x \leq_\ell y.$$ We write $(Q_1, \leq_1) + (Q_2, \leq_2)$ [or just $Q_1 + Q_2$] for the horizontal sum of Q_1 and Q_2.

Fact 3.2. Let $Q = Q_1 + Q_2$. Then the partial order $\mathcal{P}(Q)$ is naturally isomorphic to the product $\mathcal{P}(Q_1) \times \mathcal{P}(Q_2)$ (with the pointwise or “product” partial order).

Proof. The map $(E_1, E_2) \mapsto E_1 \cup E_2$ is a bijection from $\mathcal{P}(Q_1) \times \mathcal{P}(Q_2)$ onto $\mathcal{P}(Q_1 + Q_2)$, and it is easy to check that it is also an order isomorphism.

Definition 3.3. We write V for the 3-element partial order with a unique minimal and two maximal elements, and Λ for the dual order.
Lemma 3.4. If Q is a partial order containing an isomorphic copy of Λ, then the power-ordered set $\mathfrak{P}(Q)$ is not a lattice.

Proof. Let $a < b, c < b$ in Q, a and c be incomparable. We will show that in the partial order $\mathfrak{P}(Q)$ the elements $\{a, c\}$ and $\{b\}$ have no least upper bound.

Assume $E = \{a, c\} \lor \{b\}$. So, we have:

1. $\{a, c\} \leq E$.
2. $\{b\} \leq E$.
3. $E \leq \{a, b\}$ as $\{a, b\}$ is also an upper bound.
4. $E \leq \{c, b\}$, similarly.
5. By (1) and (3), E has exactly 2 elements.
6. By (3), both elements of E are $\leq b$, so by (2), $b \in E$.
7. Let $E = \{b, e\}$, $e \neq b$.
8. $e \leq a$, as $\{b, e\} \leq \{a, b\}$ (by (3)).
9. $e \leq c$, similarly. Hence $e < a$, $e < c$.
10. $a \leq e$ or $c \leq e$, as $\{a, c\} \leq \{b, e\}$ (by (1)).

Now (9) and (10) yield the desired contradiction. □

Lemma 3.5. If Q is a finite partial order containing an isomorphic copy of V, then $\mathfrak{P}(Q)$ is either not a lattice, or a nondistributive lattice.
Proof. Assume that \(\mathcal{P}(Q) \) is a lattice. By Lemma 3.4, every principal ideal \((a] \) in \(Q \) is linearly ordered (and finite, since \(Q \) is finite). Hence, for any \(a, c \in Q \), \((a] \cap (c] \) is either empty or has a greatest element, in other words: if \(a \) and \(c \) have a common lower bound, then they have a greatest lower bound.

Assume that \(V \) embeds into \(Q \), then there are incomparable elements \(a, c \) in \(Q \) with a greatest lower bound \(b = a \land c \). As \(\Lambda \) does not embed into \(Q \), \(a \) and \(c \) have no common upper bound, hence in \(\mathcal{P}(Q) \) we have

\[
\begin{array}{ccc}
a & \lor & c \\
\downarrow & & \downarrow \\
b
\end{array}
\]

Also, \(b = a \land c \) in \(Q \) implies that in the lattice \(\mathcal{P}(Q) \) we have

\[
\{a\} \lor \{c\} = \{a, c\}
\]

Proof: If \(\{x\} \leq \{a\} \) and \(\{x\} \leq \{b, c\} \), then \(x \leq a \) and \(x \leq c \), so \(x \leq b \), \(\{x\} \leq \{b\} \).

Hence the pentagon

\[
\begin{array}{ccc}
\{a, c\} & \lor & \{b, c\} \\
\downarrow & & \downarrow \\
\{a\} & \lor & \{c\} \\
\downarrow & \lor & \downarrow \\
\{b\}
\end{array}
\]

is a sublattice of \(\mathcal{P}(Q) \), so \(\mathcal{P}(Q) \) is not distributive.

\[\blacksquare\]
Remark 3.6. \(\mathcal{P}(V)\) is in fact a lattice. In contrast, \(\mathcal{P}(\Lambda)\) is not a lattice.

Conclusion 3.7. Let \(Q\) be a partial order. The following are equivalent:

1. Comparability is an equivalence relation on \(Q\);
2. \(Q\) is a horizontal sum of chains;
3. Neither \(V\) nor \(\Lambda\) embeds into \(Q\);
4. \(\mathcal{P}(Q)\) is a distributive lattice.

Proof. (1) \(\iff\) (2): The chains are just the equivalence classes.

(1) \(\iff\) (3) is clear.

(2) \(\Rightarrow\) (4) was proved in 2.5.

(4) \(\Rightarrow\) (3) follows from 3.4 and 3.5.

4. Complements

Fact 4.1. Let \(Q\) be a partial order, \(A, B \subseteq Q\). Then:

\[A \leq B \iff A \setminus B \leq B \setminus A. \]

Proof. Let \(A_0 = A \setminus B = A \setminus (A \cap B), B_0 = B \setminus A\).

If \(\pi_0 : A_0 \to B_0\) witnesses \(A_0 \leq B_0\), then we can extend \(\pi_0\) by the identity function on \(A \cap B\) to a map \(\pi : A \to B\) witnessing \(A \leq B\).

Conversely, let \(\pi : A \to B\) witness \(A \leq B\). Let \(\pi^n\) be the \(n\)-fold iterate of \(\pi\) (a partial function from \(A\) to \(B\); e.g., \(\pi^2(a)\) is only defined if \(\pi(a) \in A \cap B\)).

For each \(a \in A_0 = A \setminus B\) let \(n_a \geq 1\) be the first natural number such that \(\pi^{n_a}(a) \notin A\). [Why does \(n_a\) exist? Note that \(a\) is not a fixpoint of \(\pi\), \(\pi(a) \neq a\), so no \(\pi^n(a)\) can be a fixpoint of \(\pi\), hence all \(\pi^n(a)\) are distinct: \(a < \pi(a) < \cdots\). But \(A\) is finite, so for some \(n\) we must have \(\pi^n(a) \notin A\).]

Now define (for each \(a \in A_0\)): \(\hat{\pi}(a) = \pi^{n_a}(a)\). Clearly \(\hat{\pi} : A_0 \to B_0\), and \(a < \hat{\pi}(a)\). To show that \(\hat{\pi}\) is 1-1, assume \(\hat{\pi}(a) = \hat{\pi}(a')\), and \(n_a' = n_a + \ell\) for some \(\ell \geq 0\). Since \(\pi\) is 1-1, \(\pi^{n_a}(a) = \pi^{n_a + \ell}(a')\) implies \(a = \pi^\ell(a')\), so since \(a \notin B\) we must have \(\ell = 0, a = a'\).

Lemma 4.2. Let \(Q\) be a finite partial order. We will write \(-X\) for \(Q \setminus X\). Let \(A, B \subseteq Q\). Then: \(A \leq B\) iff \(-B \leq -A\).
Proof. By fact 4.1,

\[-B \leq -A \iff -B \setminus (-A) \leq -A \setminus (-B)\]

Now \(-B \setminus (-A) = A \setminus B\), similarly \(-A \setminus (-B) = B \setminus A\), so we can rewrite this as

\[-B \leq -A \iff A \setminus B \leq B \setminus A.\]

Again using Fact 4.1, we see that this is equivalent to \(A \leq B.\)

Hence the complement operation is an involutory anti-automorphism of \(\mathcal{P}(Q)\). If \(Q\) is an antichain, then \(A \leq B\) iff \(A \subseteq B\), so the power-ordered set \(\mathcal{P}(Q)\) is a Boolean algebra.

In general, the equation \(A \land (-A) = \emptyset\) need not hold in the power-ordered set \(\mathcal{P}(Q)\). Indeed, if \(a < b\) in \(Q\), then \(\{a\} \leq \{b\} \leq -\{a\}\).

References

Received 29 January 2002