ENUMERATION OF Γ-GROUPS OF FINITE ORDER

DARIUSH HEIDARI

Faculty of Science
Mahallat institute of higher education
Mahallat, Iran

e-mail: dheidari82@gmail.com

AND

MARZIEH AMOOSHAHI

Faculty of Science
Mahallat institute of higher education
Mahallat, Iran

e-mail: mz.amooshahi@gmail.com

Abstract

The concept of Γ-semigroups is a generalization of semigroups. In this paper, we consider Γ-groups and prove that every Γ-group is derived from a group then, we give the number of Γ-groups of small order.

Keywords: Γ-semigroup, Γ-group.

2010 Mathematics Subject Classification: 20N20.

1. Introduction

The concept of Γ-semigroups was introduced by Sen in [14] and [15] that is a generalization of a semigroups. Many classical notions of semigroups have been extended to Γ-semigroups (see, for example, [6, 10, 13, 16] and [17]). Dutta and Adhikari have found operator semigroups of a Γ-semigroup to be a very effective tool in studying Γ-semigroups [5]. Recently, Davvaz et al. introduced the notion of Γ-semihypergroups as a generalization of semigroups, a generalization of semihypergroups and a generalization of Γ-semigroups [2, 8, 9].
The determination of all groups of a given order up to isomorphism is a very old question in group theory. It was introduced by Cayley who constructed the groups of order 4 and 6 in 1854, see [4]. In this paper, we prove that a Γ-group is derived from a group. Also, we give the number of Γ-groups of small order.

2. Preliminaries

We begin this section by the definition of a Γ-semigroup.

Definition [14]. Let S and Γ be nonempty sets. Then S is called a Γ-semigroup if there exists a mapping $S \times \Gamma \times S \to S$, written (a, γ, b) by $a\gamma b$, such that satisfies the identities $(a\alpha b)\beta c = a\alpha(b\beta c)$, for all $a, b, c \in S$ and $\alpha, \beta \in \Gamma$.

Let S be a Γ-semigroup and α be a fixed element in Γ. We define $a.b = a\alpha b$, for all $a, b \in S$. It is easy to check that (S, \cdot) is a semigroup and we denote this semigroup by S_α.

Let A and B be subsets of a Γ-semigroup S and $\Delta \subseteq \Gamma$. Then $A\Delta B$ is defined as follows

$$A\Delta B = \{a\delta b \mid a \in A, b \in B, \delta \in \Delta\}.$$

For simplicity we write $a\Delta B$ and $A\Delta b$ instead of $\{a\}\Delta B$ and $A\Delta \{b\}$, respectively. Also, we write $A\delta B$ in place of $A\{\delta\}B$.

Let S be an arbitrary semigroup and Γ any nonempty set. Define a mapping $S \times \Gamma \times S \to S$ by $a\alpha b = ab$, for all $a, b \in S$ and $\alpha \in \Gamma$. It is easy to see that S is a Γ-semigroup. Thus a semigroup can be considered to be a Γ-semigroup.

In the following some examples of Γ-semigroups are presented.

Example 1. Let $S = \{i, 0, -i\}$ and $\Gamma = S$. Then S is a Γ-semigroup under the multiplication over complex number while S is not a semigroup under complex number multiplication.

Example 2. Let S be the set of all $m \times n$ matrices with entries from a field F and Γ be a set of $n \times m$ matrices with entries from F. Then S is a Γ-semigroup with the usual product of matrices.

Example 3. Let (S, \leq) be a totally ordered set and Γ be a nonempty subset of S. We define

$$x\gamma y = \max\{x, \gamma, y\},$$

for every $x, y \in S$ and $\gamma \in \Gamma$. Then S is a Γ-semigroup.
Example 4. Let $S = [0, 1]$ and $\Gamma = \mathbb{N}$. For every $x, y \in S$ and $\gamma \in \Gamma$ we define $x\gamma y = \frac{xy}{\gamma}$. Then, for every $x, y, z \in S$ and $\alpha, \beta \in \Gamma$, we have

$$(x\alpha y)\beta z = \frac{xyz}{\alpha\beta} = x\alpha(y\beta z).$$

This means that S is a Γ-semigroup.

A nonempty subset T of a Γ-semigroup S is said to be a Γ-subsemigroup of S if $TT \subseteq T$.

Definition. A nonempty subset I of Γ-semigroup S is called a left (right) Γ-closed subset if $SI \subseteq I$ ($IS \subseteq I$). A Γ-semigroup S is called a left (right) simple Γ-semigroup if it has no proper left (right) Γ-closed subset. Also, S is called a simple Γ-semigroup if it has no proper Γ-closed subset both left and right.

3. Enumeration of Γ-groups of finite order

Definition. A Γ-semigroup S is called a Γ-group if S_α is a group, for every $\alpha \in \Gamma$.

Example 5. Let $S = \{a, b, c, d, e, f\}$ and $\Gamma = \{\alpha, \beta\}$. Define the operations α and β as the following tables

<table>
<thead>
<tr>
<th>α</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>α</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>e</td>
<td>f</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
<td>f</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>d</td>
<td>f</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td>e</td>
<td>f</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>e</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>f</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>a</td>
</tr>
</tbody>
</table>

Then S is a Γ-group. One can see that f and e are the neutral elements of S_α and S_β, respectively.

Theorem 6. Let S be a Γ-semigroup. Then S is a simple Γ-semigroup if and only if S_α is a group, for every $\alpha \in \Gamma$.

Proof. Let S be a simple Γ-semigroup and $\alpha \in \Gamma$, we show that S_α is a group. Let $I = aaS$, where $a \in S$. Then, I is a right Γ-closed subset of S, indeed

$$I\Gamma S = (aaS)\Gamma S \subseteq aaS = I.$$
Since \(S \) has no proper right \(\Gamma \)-closed subset, we have \(I = a\alpha S = S \). Similarly, we can prove that \(S\alpha a = S \). Therefore, \(S_\alpha \) is a group.

Conversely, let \(I \neq \phi \) be a left \(\Gamma \)-closed subset of \(S \), \(s \in S \) and \(a \in I \). Since \(S_\alpha \) is a group, there exists \(t \in S \) such that \(s = t\alpha a \subseteq S\alpha I \subseteq I \). So \(S = I \). Similarly, we can prove that \(S \) has no proper right \(\Gamma \)-closed subset. Therefore, \(S \) is simple.

Corollary 7. Let \(S \) be a \(\Gamma \)-semigroup. If \(S_\alpha \) is a group, for some \(\alpha \in \Gamma \), then \(S_\beta \) is a group, for every \(\beta \in \Gamma \).

Proof. Since \(S_\alpha \) is a group, previous theorem implies that \(S \) is a simple \(\Gamma \)-group. Thus, for every \(\beta \in \Gamma \), \(S_\beta \) is a group. □

Corollary 8. Let \(S \) be a \(\Gamma \)-semigroup. If \(S_\alpha \) is a group, for some \(\alpha \in \Gamma \), then \(S \) is a \(\Gamma \)-group.

Proof. By Corollary 7, it is trivial. □

Theorem 9. Let \(S \) be a \(\Gamma \)-group and \(\alpha, \beta \in \Gamma \). Then there exists \(b \in S \) such that \(x\beta y = x\alpha b_\alpha y \), for every \(x, y \in S \).

Proof. It is sufficient to put \(b = e_\alpha \beta e_\alpha \), where \(e_\alpha \) is the neutral element of \(S_\alpha \). Then, for every \(x, y \in S \), we have

\[
x\beta y = (x\alpha e_\alpha)\beta(e_\alpha \alpha y) \\
= x\alpha (e_\alpha \beta e_\alpha) \alpha y \\
= x\alpha b_\alpha y.
\]

By the previous theorem, we conclude that every \(\Gamma \)-group is derived from a group. Therefore, if \(S \) is a \(\Gamma \)-group, then we can consider \((S, \cdot) \) as a group and \(\Gamma \subseteq S \), so \(x\alpha y \) is a product in \((S, \cdot) \), for every \(x, y \in S \) and \(\alpha \in \Gamma \). Also, Theorem 9 implies that the groups \(S_\alpha \) and \(S_\beta \) are isomorphic, for every \(\alpha, \beta \in \Gamma \).

Definition. Let \(S \) be a \(\Gamma \)-group and \(S' \) be a \(\Gamma' \)-group. If there exist mappings \(\varphi_\gamma : S \longrightarrow S' \), for every \(\gamma \in \Gamma \), and \(f : \Gamma \longrightarrow \Gamma' \) such that

\[\varphi_\gamma(x\gamma y) = \varphi_\gamma(x)f(\gamma)\varphi_\gamma(y),\]

for all \(x, y \in S \), then we say \((\{\varphi_\gamma\}_{\gamma \in \Gamma}, f)\) is a homomorphism between \(S \) and \(S' \). Also, if \(f \) and \(\varphi_\gamma \), for every \(\gamma \in \Gamma \), are bijections, then \((\{\varphi_\gamma\}_{\gamma \in \Gamma}, f)\) is called an isomorphism, and \(S \) and \(S' \) are called isomorphic.

Lemma 10. Let \(S \) be a \(\Gamma \)-group and \(S' \) be a \(\Gamma' \)-group. Then \(S \) and \(S' \) are isomorphic if and only if \(S \) and \(S' \) are isomorphic group and \(|\Gamma| = |\Gamma'|\).
Proof. If S and S' are isomorphic, then by the previous definition, for every $\alpha \in \Gamma$, the groups S_α and S'_α are isomorphic where $f : S \to S'$ is a bijection and $f(\alpha) = \alpha'$.

Theorem 11. The number of Γ-groups of order n is nk, up to isomorphism, where k is the number of isomorphism classes of groups of order n.

Proof. Suppose that (S, \cdot) is a group and Γ and Γ' be two subsets of S such that $|\Gamma| = |\Gamma'|$. Then by previous lemma, there exists only one Γ-group derived from (S, \cdot), up to isomorphism. So, for every $m \leq n$ there exists only one Γ-group, where Γ is a subset of S such that $|\Gamma| = m$. Thus, the number of Γ-groups derived from (S, \cdot) is n, up to isomorphism. Therefore, if there exist k groups of order n, then we have nk Γ-groups of order n, up to isomorphism.

Corollary 12. Suppose that $n > 1$ is an integer with decomposition into primes as $n = p_1^{e_1}p_2^{e_2} \cdots p_r^{e_r}$. If n is prime to

$$\prod_{j=1}^{r}(p_j^{e_j} - 1)$$

and $e_j \leq 2$, then the number of Γ-groups of order n is $n2^m$, where m is the number of j's with $e_j = 2$.

Proof. By a result of Rédei [12], all such groups of order n are abelian. Thus, the number of isomorphism types of abelian groups of order n is given by

$$\prod_{j=1}^{r} p(e_j) = 2^m,$$

where $p(e_j)$ is the number of partitions of $e_j \leq 2$ and $p(1) = 1, p(2) = 2$. The proof is completed by applying Theorem 11.

The case $m = 0$ of the Corollary 12 was studied by Szele [18]. In connection with this, Erdős [7] showed that the number of $n \leq x$ such that $(n, \varphi(n)) = 1$ ($\varphi(n)$ is Euler’s phi function) is asymptotic to

$$\frac{e^{-\gamma}x}{\log\log\log x}$$

where γ is Euler’s constant. For additional results on the asymptotic of $n \leq x$ satisfying Rédei’s condition and asymptotic enumeration of finite abelian groups see [1, 11, 19].

In the following table we give the number of Γ-groups of order less than 30.
<table>
<thead>
<tr>
<th>Order</th>
<th>Number of Γ – groups</th>
<th>Order</th>
<th>Number of Γ – groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>16</td>
<td>224</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>18</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>21</td>
<td>42</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>22</td>
<td>44</td>
</tr>
<tr>
<td>8</td>
<td>40</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td>24</td>
<td>360</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>26</td>
<td>52</td>
</tr>
<tr>
<td>12</td>
<td>60</td>
<td>27</td>
<td>135</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>28</td>
<td>112</td>
</tr>
<tr>
<td>14</td>
<td>28</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>30</td>
<td>120</td>
</tr>
</tbody>
</table>

Acknowledgement

We would like to thank the referee for his/her great effort in proofreading the manuscript.

References

[4] A. Cayley, *On the theory of groups, as depending on the symbolic equation $\theta^n = 1$*, Phil. Mag. 7 (1854) 40–47.

Received 26 October 2014
First revised 22 January 2015
Second revised 10 February 2015