ALMOST PERIODIC EXTENSIONS OF FUNCTIONS, III

BY

S. HARTMAN AND C. RYLL-NARDZEWSKI (WROCŁAW)

We recall the definition of \(I \)-sets and \(I_\theta \)-sets (see [1] and [2]) in locally compact abelian groups (LCA groups):

\(A \) is an \(I \)-set if every bounded real or complex valued function on \(A \) which is uniformly continuous on \(A \) with respect to the uniform group structure in \(G \) can be extended to an almost periodic function over \(G \).

To define the (stronger) property \(I_\theta \) we simply omit the assumption of uniform continuity of the function which has to be extended.

In [2], we proved that if \(E \) is an \(I_\theta \)-set in a separable non-discrete LCA group \(G \) and \(\tilde{E} \) means the (weak) closure of \(E \) in the Bohr compactification \(\tilde{G} \) of \(G \), then \(\mu(\tilde{E}) = 0 \), \(\mu \) denoting the Haar measure in \(\tilde{G} \). This was an answer to the first question in problem P 452 which was raised in [1] for \(G = \mathbb{R} \) (the real line) and reformulated in [2] for arbitrary LCA groups. This result was extended and strengthened by Kahane [3], in particular, we know at present that \(\mu(\tilde{E}) = 0 \) for \(E \in I_\theta \), whatever be the LCA group \(G \). Here we intend to answer the second question in P 452 for \(G = \mathbb{R} \) by proving the following

Theorem. If \(E \subset \mathbb{R} \) is an \(I \)-set, then \(\mu(\tilde{E}) = 0 \).

Denote by \(G_d \) a group \(G \) with discrete topology, and by \(\hat{G} \) or \(G^\wedge \) the character group of \(G \).

Lemma. If \(H \) is a dense subgroup of \(\mathbb{R} \) and \(\varphi \) an isomorphic continuous imbedding of \(\mathbb{R} \) into \(\tilde{R} = (R_d)^\wedge \), then \(\varphi(R) \cap (R_d/H_d)^\wedge \) = (0).

In fact, \((R_d/H_d)^\wedge \) is the annihilator of \(H_d \) and so, in view of the density of \(H \), it does not contain any non-trivial continuous character of \(R \), thus any non-zero element of \(\varphi(R) \).

Let us observe that \(\tilde{R} \) is the cartesian product of \(2^{\mathbb{N}_0} \) copies of the (solenoidal) group \(\hat{S} \), \(S = S_d \) denoting the group of rationals. We therefore can regard \(\tilde{R} \) as the product of two compact groups: the metric group \(\hat{S} \) (one copy) and a non-metric complementary factor \(T \) (isomorphic to the group \(\tilde{R} \) itself). Whatever be such splitting, the lemma gives
\(\varphi(R) \cap \hat{S} = (0) \). To see this we may take for \(H \) a summand complementary to \(S \), so that \(R_d = S_d + H_d \) and \(S_d = R_d | H_d \).

We now proceed to the proof of the Theorem. It is obvious that there is an \(I_0 \)-set \(A \subset E \) and a compact set (closed interval) \(K \) such that \(A + K \supset E \). We shall prove that \(\mu((A + K)^c) = \mu(\hat{A} + K) = 0 \). (Here we identify every subset of \(R \) with its \(\varphi \)-image.) Let \(\mu_1 \) be the Haar measure in \(\hat{S} \) and \(\mu_2 \) that in \(T \). Then \(\mu = \mu_1 \times \mu_2 \) is the Haar measure in \(\hat{R} \). It is enough to prove that for each \(y \in T \) we have \(\mu_1(\{x : (x, y) \in \hat{A} + K\}) = 0 \) and to apply Fubini's theorem. Actually, we will show that for each \(y \in T \) there is only a finite number of \(x \)'s such that \((x, y) \in \hat{A} + K \). In fact, all such \(x \)'s make a compact metric set in \(\hat{S} \), hence, if there were infinitely many of them for some \(y \), there would be a convergent sequence \(\{(x_n, y)\} \) of distinct elements in \(\hat{A} + K \). Putting \(x_n = \xi_n' + \xi_n'' \) and \(y = \eta_n' + \eta_n'' \) with \((\xi_n', \eta_n') \in \hat{A} \) and \((\xi_n'', \eta_n'') \in K \) we could select a convergent subsequence \(\{(\xi_{n_k}', \eta_{n_k})\} \), owing to the compactness and metrizability of \(K \). Then \((\xi_{n_k}', \eta_{n_k}) \) would equally converge. But since \(\hat{A} \) is homeomorphic to the Čech compactification \(\beta(N) \) of the set of integers (see [1]), it does not contain any non-trivial convergent sequence. So we would have \(\xi_{n_k}' = \text{const} \), \(\eta_{n_k}' = \text{const} \) and \(\eta_{n_k}'' = y - \eta_{n_k}' = \text{const} \) for \(k > k_0 \). Hence, for those \(k \), \(\{(\xi_{n_k}'', \eta)\} \) would consist of distinct elements of \(K \). This, however, is impossible, because the "axis" \(\hat{S} \) having no non-zero element in common with \(R \supset K \), no set \(\{(x, y)\} \) with a fixed \(y \) contains more than one point from \(K \). The proof is thus complete.

The Theorem can be reformulated in the intrinsic language of \(R \) as follows:

Is \(E \) an \(I \)-set in \(R \), then, for every \(\varepsilon > 0 \), there is an almost periodic function on \(R \), equal 1 on \(E \), non-negative and of mean value less than \(\varepsilon \).

REFERENCES

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 28. 12. 1965