ON A FAIR MANIFOLD FARE RATING ON A LONG TRAFFIC LINE

Summary. The paper studies the possibilities to design a fair manifold tariff on a long traffic line. If a single tariff is used on a long bus or railway line, passengers travelling long distances are favoured at the expense of those travelling short distances. The fairest approach to tariff is setting an individual tariff for every origin–destination relation of line stops that expresses real travel costs. However, sometimes the individual tariff is too complicated and is therefore replaced by double-, triple- or manifold tariff. This paper shows how to design a manifold tariff in order to minimize unfairness to passengers.

1. INTRODUCTION

Suppose we are given a long bus line with a single tariff. Some passengers travel long distances while others take short trips. Such a single tariff is advantageous for the first-mentioned passengers. However, a single tariff is inconvenient for short-trip passengers. Hamacher and Schöbel tried to solve this problem by dividing serviced area into zones in [2, 3]. Another way to improve fairness is to introduce a double tariff – fare $x$ for passengers travelling at most $k$ laps and fare $y$ for passengers travelling more than $k$ laps. A generalization of double tariff is the approach where passengers are sorted into several groups by the number of laps traveled and determine fare for every group. This paper shows how to design such a fair manifold tariff.

2. A MATHEMATICAL MODEL AND ITS SOLUTION

Suppose we are given a bus line $L$ with $n$ bus stops. Lap of a line $L$ is a segment of a bus line between two successive bus stops. Suppose, we are given a line $L$ with $n$ bus stops and the following input data:

- $R_i$ – the number of passengers travelling exactly along $i$ laps of the line $L$ $(i = 1, 2, ..., n - 1)$
- $t_i$ – ideal, but for some reasons inapplicable, distance tariff for passengers travelling along exactly $i$ laps of the line $L$
- $K$ – the number of tariff regions
- the numbers $0 = k_0 < k_1 < k_2 < ... < k_K = n - 1$ – boundary numbers of tariff regions – all passengers travelling along $i$ laps where $k_{i-1} < j \leq k_i$ pay the same fare.

Let $x_1, x_2, ..., x_K$ be unknown variables with the following meaning:

- $x_1$ – manifold tariff fare for passengers traveling at most $k_1$ laps
- $x_2$ – manifold tariff fare for passengers traveling from $(k_1 + 1)$ to $k_2$ laps
- $x_i$ – manifold tariff fare for passengers traveling from $(k_{i-1} + 1)$ to $k_i$ laps
- $x_K$ – manifold tariff fare for passengers traveling from $(k_{K-1} + 1)$ to $k_K$ laps; $k_K = n - 1$

Total fare on line $L$ in the case of ideal fair tariff is
Total fare on line \( L \) in the case of multifold tariff is

\[
F_m = \sum_{r=1}^{K} \sum_{i=k_{r-1}+1}^{k_r} x_r R_i 
\]

(2)

A bus provider wants to keep the income from double tariff the same as the one from ideal fair tariff, i.e.:

\[
F = F_m \quad \sum_{i=1}^{n-1} t_i R_i = \sum_{r=1}^{K} \sum_{i=k_{r-1}+1}^{k_r} x_r R_i
\]

(3)

(4)

There are several ways to express unfairness \( u_i \) to a passenger travelling exactly \( i \) laps. A comprehensive survey of attitudes to fairness is presented in [1]. We decided to use the second power of the difference between the ideal fare and the multifold fare of a single passenger travelling exactly \( i \) laps:

\[
u_i = \begin{cases} 
(x_1 - t_i)^2 & \text{if } 0 \leq i \leq k_1 \\
(x_2 - t_i)^2 & \text{if } k_1 + 1 \leq i \leq k_2 \\
\cdots \cdots \cdots \cdots \\
(x_K - t_i)^2 & \text{if } k_{K-1} + 1 \leq i \leq k_K 
\end{cases}
\]

(5)

There are several reasons for this selection. The perception of unfairness is not linear. People are willing to ignore small injustices, but are sensitive to large discrepancies. The simplest model of nonlinear increasing perception of unfairness is a quadratic function.

Another motive to use the second power of differences is a similarity with the linear regression procedure where parameters of the regression line are obtained by minimization of the sum of squared differences. Last but not least, the resulting mathematical model allows an exact mathematical solution based on well-known mathematical methods.

Total unfairness to all passengers travelling exactly \( i \) laps is

\[
R_i u_i = R_i (x_r - t_i)^2
\]

(6)

where \( r \) is such that \( i \in (k_{r-1}, k_r) \).

Total unfairness to all passengers travelling more than \( k_{r-1} \) and at most \( k_r \) laps (i.e. of all passengers with fare \( x_r \)) is

\[
\sum_{i=k_{r-1}+1}^{k_r} R_i u_i = \sum_{i=k_{r-1}+1}^{k_r} R_i (x_r - t_i)^2
\]

(7)

Total unfairness to all passengers on the considered line can be calculated as follows:

\[
U(x_1, x_2, ..., x_K) = \sum_{r=1}^{K} \sum_{i=k_{r-1}+1}^{k_r} R_i (x_r - t_i)^2
\]

(8)

Our next goal is to determine the given number \( K \) and fixed numbers

\[
0 = k_0 < k_1 < k_2 < \ldots < k_K = n - 1
\]

(9)

representing tariff regions \( (k_{r-1}, k_r), r = 1, 2, ..., K \) fares \( x_1, x_2, ..., x_K \) which minimize the total unfairness to all passengers. A necessary constraint is to retain unchanged the total income on the considered line. This leads to the following mathematical problem:

Minimize

\[
U(x_1, x_2, ..., x_K) = \sum_{r=1}^{K} \sum_{i=k_{r-1}+1}^{k_r} R_i (x_r - t_i)^2
\]

subject to

\[
\sum_{i=1}^{n} x_i R_i = \sum_{r=1}^{K} \sum_{i=k_{r-1}+1}^{k_r} x_r R_i
\]

(10)

(11)

This formulation is a constrained extreme problem solvable by the Lagrange Multiplier Method.
The next procedure of minimizing (1) subject to (2) is slightly technical and a reader who is not interested in the mathematical solution can skip to formulas (7) and (8) expressing optimum fare and minimal total unfairness.

Denote

\[ F(x_1, x_2, ..., x_K, \lambda) = U(x_1, x_2, ..., x_K) - \frac{\lambda}{2} \left[ \sum_{r=1}^{K} \sum_{i=k_{r-1}+1}^{k_r} x_r R_i - \sum_{i=1}^{n-1} t_i R_i \right] \]  

(12)

\[ F(x_1, x_2, ..., x_K, \lambda) = \sum_{r=1}^{K} \sum_{i=k_{r-1}+1}^{k_r} R_i (x_r - t_i)^2 - \lambda \left[ \sum_{r=1}^{K} \sum_{i=k_{r-1}+1}^{k_r} x_r R_i - \sum_{i=1}^{n-1} t_i R_i \right] \]  

(13)

Formula (1) for \( U(x_1, x_2, ..., x_K) \) defines a differentiable function on \( \mathbb{R}^K \) (where \( \mathbb{R} \) is the set of all real numbers). The Lagrange Multiplier Theorem asserts that if \( U(x_1, x_2, ..., x_K) \) achieves a minimum on \( \mathbb{R}^2 \) subject to (2), then the minimum is necessarily achieved at a point where all partial derivatives

\[ \frac{\partial F(x_1, x_2, ..., x_K, \lambda)}{\partial \lambda} = 0 \quad \text{and} \quad \frac{\partial F(x_1, x_2, ..., x_K, \lambda)}{\partial x_r} = 0 \quad \text{for all} \ r = 1, 2, ..., K. \]  

(14)

Let us see where the Lagrange Multiplier method tells us to look for an optimal solution. It holds that:

\[ \frac{\partial F(x_1, x_2, ..., x_K, \lambda)}{\partial x_r} = 2 \sum_{i=k_{r-1}+1}^{k_r} R_i (x_r - t_i) - \lambda \sum_{i=k_{r-1}+1}^{k_r} R_i = 0 \]  

(15)

It follows from equation (15):

\[ \frac{\partial F(x_1, x_2, ..., x_K, \lambda)}{\partial x_r} = 2 \sum_{i=k_{r-1}+1}^{k_r} R_i (x_r - t_i) - \lambda \sum_{i=k_{r-1}+1}^{k_r} R_i = 0 \]  

(16)

the solution of (5) is as follows:

\[ x_r = \frac{\sum_{i=k_{r-1}+1}^{k_r} R_i t_i}{\sum_{i=k_{r-1}+1}^{k_r} R_i} + \frac{\lambda}{2} \]  

(17)

Substitution for \( x_r \) from (17) into equation (14) gives

\[ \sum_{r=1}^{K} x_r \sum_{i=k_{r-1}+1}^{k_r} R_i - \sum_{i=1}^{n-1} t_i R_i = \sum_{r=1}^{K} \sum_{i=k_{r-1}+1}^{k_r} R_i t_i + \frac{\lambda}{2} \sum_{r=1}^{K} \sum_{i=k_{r-1}+1}^{k_r} R_i - \sum_{i=1}^{n-1} t_i R_i = \frac{\lambda}{2} \sum_{i=1}^{n-1} R_i = 0 \]  

(18)

It follows from the last equation that \( \lambda = 0 \), and therefore it holds for optimum fares \( x_r^* \) minimizing total unfairness

\[ x_r^* = \frac{\sum_{i=k_{r-1}+1}^{k_r} R_i t_i}{\sum_{i=k_{r-1}+1}^{k_r} R_i} \quad \text{for} \ r = 1, 2, ..., K \]  

(19)

To guarantee that the function \( U(x_1, x_2, ..., x_K) \) achieves minimum at point \((x_1^*, x_2^*, ..., x_K^*)\) (19), it is necessary to show that all following second partial derivatives are greater than zero.

Indeed, it holds that:

\[ \frac{\partial^2 F(x_1, x_2, ..., x_K, \lambda)}{\partial x_r^2} = 2 \sum_{i=k_{r-1}+1}^{k_r} R_i > 0, \quad r = 1, 2, ..., K \]  

(20)

However, fares given by formula (19) are optimal for fixed tariff range borders
and corresponding total unfairness is

\[ U^* = \sum_{j=1}^{n-1} R_j \sum_{r=1}^{K} \frac{\sum_{i=k_{r-1}+1}^{k_r} R_i t_i}{\sum_{i=k_{r-1}+1}^{k_r} R_i} - t_j \]

The second step of our proposed procedure is to find numbers \(0 = k_0 < k_1 < k_2 < \ldots < k_K = n - 1\) for which is \(U^* = U^*(k_1, k_2, \ldots, k_K)\) minimal.

Notice that the optimum \(x_r\) depends only on the boundaries of the \(r\)-th tariff region and numbers of passengers belonging to this region.

Let us define an acyclic digraph \(G = (V, A, C)\) with vertex set defined as

\[ V = \{(0,0), (K,n)\} \cup \{(r,i) \mid r = 1,2,\ldots,K-1,\ i = 1,2,\ldots,n-1\} \]

and arc set

\[ A = \{(r,i)(r+1,j) \mid (r,i) \in V, (r+1,j) \in V, i < j\} \]

The arc cost is defined as follows:

\[ c((0,0)(1,j)) = 0 \]

\[ c((r,i)(r+1,j)) = \sum_{j=k_{r-1}+1}^{k_r} R_j \frac{\sum_{i=k_{r-1}+1}^{k_r} R_i t_i}{\sum_{i=k_{r-1}+1}^{k_r} R_i} - t_j \]

Let us note that the cost of the arc \((r,i)(r+1,j)\) is the total unfairness to all passengers travelling more than \(k_{r-1}\) and at most \(k_r\) laps.

Every path from vertex \((0,0)\) to vertex \((K,n)\) in digraph \(G = (V, A, C)\) is in the form

\[ (0,0), (1,k_1), (2,k_2), \ldots, (K-1, k_{K-1}), (K,n) \]

with the following length.
On a fair manifold fare rating on a long traffic line

\begin{equation}
0 + \sum_{j=1}^{k_1} R_j \left( \frac{\sum_{i=1}^{k_1} R_i t_i}{\sum_{i=1}^{k_1} R_i} - t_j \right)^2 + \sum_{j=k_1+1}^{k_2} R_j \left( \frac{\sum_{i=k_1+1}^{k_2} R_i t_i}{\sum_{i=k_1+1}^{k_2} R_i} - t_j \right)^2 + \\
\sum_{j=k_2+1}^{k_3} R_j \left( \frac{\sum_{i=k_2+1}^{k_3} R_i t_i}{\sum_{i=k_2+1}^{k_3} R_i} - t_j \right)^2 + \cdots + \sum_{j=k_{K-1}+1}^{k_K} R_j \left( \frac{\sum_{i=k_{K-1}+1}^{k_K} R_i t_i}{\sum_{i=k_{K-1}+1}^{k_K} R_i} - t_j \right)^2 = 0
\end{equation}

(28)

The shortest path from vertex \((0,0)\) to vertex \((K,n)\) determines a series

\begin{equation}
0 = k_0 < k_1 < k_2 < \ldots < k_K = n - 1
\end{equation}

(29)

which minimizes total unfairness \(U^*(k_1, k_2, \ldots, k_K)\). We have just reduced the problem of minimizing \(U^*(k_1, k_2, \ldots, k_K)\) to a shortest path problem in digraph \(G = (V, A, C)\).

3. EXPERIMENTS

We have used real data from public transport in the Slovakian town of Martin to compute optimum manifold fares. The public transport system in Martin serves circa 40,000 passengers in one working day. The longest trip has 26 bus stops and the histogram of traveling distance (number of traveling laps) is shown in Fig. 2.

Fig. 2. Histogram of traveling distances of passengers in Martin

3.1. Ideal fare

We have exactly 40,409 sold tickets in our dataset and the price of a basic ticket in Martin for a single tariff public transport system is 0.60 € today. Total receipts without discount amounted to 24,245.40 €. Suppose fixed and variable costs are divided in the ratio of 50:50; the ideal fare for a passenger \(i\) traveling \(d_i\) loops can be computed using the formula \(t_i = 0.30 + 0.0426d_i\).

3.2. Optimal manifold fares

The proposed algorithm was implemented in the C# programming language using Microsoft Visual Studio. The LabelSet algorithm was used to search for an optimal solution as the shortest path in the directed graph of zone strategies. Optimal results for the public transport of Martin with 2, 3, 4 and 5 zones are shown in Table 1.
Optimal manifold fares

<table>
<thead>
<tr>
<th>Number of tariff regions</th>
<th>Tariff region</th>
<th>Laps</th>
<th>Fare</th>
<th>Unfairness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1–8</td>
<td>0.50 €</td>
<td>407.9</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9–26</td>
<td>0.80 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1–5</td>
<td>0.44 €</td>
<td>201.2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6–10</td>
<td>0.63 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>11–26</td>
<td>0.87 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1–4</td>
<td>0.42 €</td>
<td>119.9</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5–8</td>
<td>0.57 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>9–13</td>
<td>0.75 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>14–26</td>
<td>0.98 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1–3</td>
<td>0.39 €</td>
<td>77.1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4–6</td>
<td>0.51 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7–9</td>
<td>0.64 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10–13</td>
<td>0.78 €</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>14–26</td>
<td>0.98 €</td>
<td></td>
</tr>
</tbody>
</table>

Acknowledgements
This work was supported by the research grant APVV-14-0658 “Optimization of urban and regional public personal transport”.

References

Received 11.01.2016; accepted in revised form 22.05.2017