Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 14, nr 2 | 55--61
Tytuł artykułu

Repetitive construction processes scheduling using mixed-integer linear programming

Treść / Zawartość
Warianty tytułu
Języki publikacji
Many construction projects contain several identical or similar units, such as floors in multistory buildings, houses in housing developments, sections of pipelines or highways. Repetitive processes arise from the subdivision of a generalized construction process into specific activities associated with particular units. In many cases it is possible to perform individual processes (repeated in each units) in alternative ways (modes). Regardless of the construction project procurement system, duration and cost are the key factors determining project’s economic efficiency and fulfillment of the owner’s needs and requirements. Minimizing project duration and cost are the most important criteria for schedule optimization. Processes that repeat from unit to unit are realized by specialized crews. Uninterrupted resource utilization becomes an extremely important issue for scheduling repetitive processes to minimize employment costs. In this paper, the problem of selecting appropriate modes and minimizing the total project cost and with a constraint on project duration is presented with respect to the continuity of the crews’ work. The paper uses the mixed integer linear programming to model this problem and uses a case study to illustrate it.

Opis fizyczny
Bibliogr. 10 poz., fig., tab.
  • Katedra Inżynierii Procesów Budowlanych, Wydział Budownictwa i Architektury, Politechnika Lubelska,
  • 1 Alexandros K., Sergios L. Correspondence of activity relationships and critical path between time–location diagrams and CPM. Operational Research 4(3) (2004) 277–290.
  • 2 Ammar M.A. LOB and CPM integrated method for scheduling repetitive project. Journal of Construction Engineering and Management 139(1) (2013) 44–50.
  • 3 El–Kholy A.M. Scheduling repetitive construction projects using fuzzy linear programming. IOSR Journal of Mechanical and Civil Engineering 4(2) (2012) 13–22.
  • 4 Fan S.L., Sun K.S., Wang Y.R. GA optimization model for repetitive projects with soft logic. Automation in Construction 21 (2012) 253–261.
  • 5 Hegazy T., Wassef N. Cost optimization in projects with repetitive nonserial activities. Journal of Construction Engineering and Management 127(3) (2001) 183–191.
  • 6 Hyari K., El–Rayes K. Optimal planning and scheduling for repetitive construction projects. Journal of Management in Engineering 22(1) (2006) 11–19.
  • 7 Ispilandis P.G. Multi–objective linear programming model for scheduling linear repetitive projects. Journal of Construction Engineering and Management 133(6) (2007) 417–424.
  • 8 Kang L.S., Park I.C., Lee B.H. Optimal schedule planning for multiple, repetitive construction process. Journal of Construction Engineering and Management 127(5) (2001) 382–390.
  • 9 Khalied H., Khaled E. Optimal planning and scheduling for repetitive construction projects. Journal of Management in Engineering 22(1) (2006) 11–19.
  • 10 Wang W., Wang X., Ge X., He Y. Resource continuity constraints in repetitive project scheduling. Journal of Information & Computational Science 10:17 (2013) 5619–5628.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.