A transformer winding deformation detection method based on the analysis of leakage inductance changes

LI JIANSHENG, TAO FENGBO, WEI CHAO, LU YUNCAI, WU PENG, ZHU MENGZHOU, YU MIAO

Jiangsu Electric Power Company Research Institute, Nanjing 211103, China
e-mail: lijiansheng86@hotmail.com
(Received: 30.09.2014, revised: 5.03.2015)

Abstract: The detection of transformer winding deformation caused by short-circuit current is of great significance to the realization of condition based maintenance. Considering the influence of environment and measurement errors, an online deformation detection method is proposed based on the analysis of leakage inductance changes. First, the operation expressions are derived on the basis of the equivalent circuit and the leakage inductance parameters are identified by the partial least squares regression algorithm. Second, the amount of the leakage inductance samples in a detection time window is determined using the Monte Carlo simulation thought, and then the samples in the confidence interval are obtained. Last, a criteria is built by the mean value changes of the leakage inductance samples and the winding deformation is detected. The online detection method considers the random fluctuation characteristics of the leakage inductance samples, adjust the threshold value automatically, and can quantify the change range to assess the severity. Based on the field data, the distribution of the leakage inductance samples is analyzed to obey the normal function approximately. Three deformation experiments are done by different sub-winding connections and the detection results verify the effectiveness of the proposed method.

Key words: condition-based maintenance, winding deformation, leakage inductance, partial least squares regression

1. Introduction

The traditional maintenance has some limitations in technical and economical aspects, which may lead to excessive or lack of overhaul. To realize condition based maintenance, the accuracy of equipment condition assessment is very important [1-4]. Therein, the detection of transformer winding deformation is one piece.

Because of the impact of short-circuit current, the axial and radial size of windings may change, which threatens the safe operation of transformers. According to the signal type, the transformer winding deformation detection researches can be divided into two classes, the detection method based on non-electrical information and the detection method based on electrical information. The former method is based on the vibration signal and needs extra
sensors [5-6]. The latter uses the frequency response or leakage inductance characteristics to detect winding deformation [7-14]. The frequency response analysis method is offline and the method based on the leakage inductance can be realized online, therefore the method based on the leakage inductance should be paid more attention to. In the existing researches, the leakage inductance is calculated by the least squares algorithm and the detection process is rough, causing the problem of misconvergence as well as tiny deformation detection difficulty. Based on the results obtained by the above analysis, the transformer may operate with defects, which threatens the grid operation.

To improve the winding deformation detection accuracy, a method based on the analysis of the leakage inductance changes is proposed. First, based on the equivalent circuit, the leakage inductance parameters are identified by the partial least squares regression algorithm. Second, the amount of the leakage inductance samples in a detection time window is determined on the basis of its probability distribution. Last, by comparing the mean data of the change samples in different confidence intervals with the threshold value, the winding deformation is detected. The method considers the parameter fluctuation characteristics and has high sensitivity and self-learning ability.

2. Leakage inductance identification based on the partial least squares regression algorithm

In this section, the relationship between the leakage inductance and the winding deformation is analyzed based on a single-phase two-winding transformer. And the leakage inductance is calculated by the partial least squares regression algorithm, which can avoid the abnormal phenomenon in the least square regression processes and ensure accurate and reliable results [15-19].

2.1. Leakage inductance analysis

According to the definition of inductance, the leakage inductance \(L_\sigma \) of transformer windings can be calculated by (1).

\[
L_\sigma = \frac{\psi_\sigma}{i}.
\]

(1)

Wherein, \(\psi_\sigma \) is the leakage flux linkage and \(i \) represents the current flowing through the winding.

In Figure 1, a single-phase two-winding transformer is shown and the leakage inductance can be derived from (2), which is relative with winding size and its location.

\[
L_\sigma = \mu_0 N_1^2 \frac{2\pi}{l'} \left(\frac{a_1 r_1 + a_2 r_2}{3} + a_{12} r_{12} \right).
\]

(2)

Here, \(\mu_0 \) represents the air permeability, \(N_1 \) is the primary winding turns, \(l' \) is magnetic line height, \(a_1, a_2, a_{12}, r_1, r_2, r_{12} \) are the size and location parameters of transformer windings.
When the transformer winding deforms, the parameters a_1, a_2, a_{12}, r_1, r_2 and r_{12} may change, which makes the leakage inductance L_σ change. Therefore, the accurate identification of the leakage inductance is an important point of detecting winding deformation.

2.2. Leakage inductance identification algorithm

In the leakage inductance identification, when the coefficient determinant is close to zero, the regression results got by the least square method will contain a serious rounding error and have poor accuracy. However, the partial least squares regression algorithm can solve this kind of problem.
In Figure 2, a single-phase two winding transformer model is shown. Wherein, \(N_1, N_2 \) represent the turns of primary and secondary winding; \(L_1, L_2 \) are the leakage inductance and \(R_1, R_2 \) are the leakage resistance respectively.

The electromagnetic transient process during the operation of the transformer can be expressed as:

\[
\begin{align*}
 u_1 &= L_1 \frac{di_1}{dt} + R_1i_1 - e_1 \\
 u_2 &= L_2 \frac{di_2}{dt} + R_2i_2 - e_2
\end{align*}
\]

Wherein,

\[e_1 = ke_2, \quad e_1 = N_1 \frac{d\phi}{dt}, \quad k = \frac{N_1}{N_2} \]

and \(\Phi \) is the magnetic flux.

Eliminate \(e_1 \) and \(e_2 \), the formula (4) is got.

\[
 u_1 - ku_2 = L_1 \frac{di_1}{dt} + R_1i_1 - kL_2 \frac{di_2}{dt} - kR_2i_2.
\]

The integral expression of formula (4) is shown in (5).

\[
 \int_{t_0}^{t} (u_1 - ku_2) dt = L_1 (i_1(t) - i_1(t_0)) + R_1 \int_{t_0}^{t} i_1 dt - kL_2 (i_2(t) - i_2(t_0)) - kR_2 \int_{t_0}^{t} i_2 dt
\]

Here, \(t_0 \) is the initial time and \(t \) is the time of subsequent point. Put the data of different time into (5), and (6) can be got.

\[
 XA = Y
\]

\[
 X = \begin{bmatrix}
 \int_{t_0}^{t_1} i_1 dt & \int_{t_0}^{t_2} i_1 dt & \cdots & \int_{t_0}^{t_n} i_1 dt \\
 \int_{t_1}^{t_2} i_2 dt & \int_{t_1}^{t_2} i_2 dt & \cdots & \int_{t_1}^{t_n} i_2 dt \\
 \vdots & \vdots & \ddots & \vdots \\
 \int_{t_{n-1}}^{t_n} i_2 dt & \int_{t_{n-1}}^{t_n} i_2 dt & \cdots & \int_{t_{n-1}}^{t_n} i_2 dt
 \end{bmatrix}
\]

\[
 Y = \begin{bmatrix}
 \int_{t_0}^{t_1} u_1 dt \\
 \int_{t_0}^{t_2} u_1 dt \\
 \vdots \\
 \int_{t_0}^{t_n} u_1 dt
 \end{bmatrix}
\]

\[
 A = [k L_1 R_1 kL_2 kR_2].
\]

In (6), \(X \) is the coefficient matrix; \(Y \) is a constant matrix; and \(A \) contains the parameters to be identified; \(t_1, t_2, \ldots, t_n \) represent \(n \) different moments; \(' \) is the matrix transpose expression;
k, L_1, R_1, L_2, R_2 are the unknown parameters. Standardize the independent variables X and the dependent variable Y respectively, and X_0 and Y_0 can be got. Then the unknown parameters are identified by partial least squares regression algorithm following the following steps.

1) According to (7)-(8), extract the first component g_1 and u_1 from X_0 and Y_0.

\[
\omega_1 = \frac{X_0^\top Y_0}{\|X_0^\top Y_0\|} = \frac{1}{\sqrt{\sum_{j=1}^{n} r^2(x_j, y)}} \begin{bmatrix} r(x_1, y) \\ \vdots \\ r(x_n, y) \end{bmatrix},
\]

\[
g_1 = X_0 \omega_1
\]

\[
c_1 = \frac{Y_0^\top X_0}{\|Y_0^\top X_0\|}
\]

\[
u_1 = Y_0 c_1.
\]

In (7) and (8), $r(x_j, y)$ represents the correlation coefficient between x_j and y; ω_1 is the first axis component of X_0 and its modulus value $\|\omega_1\|=1$; c_1 is the first axis component of Y_0 and $\|c_1\|=1$.

2) Calculate the residual matrix X_1 and Y_1 of the regression equation by (9).

\[
\begin{bmatrix} X_1 = X_0 - g_1 p_1^\top \\ Y_1 = Y_0 - g_1 r_1^\top \end{bmatrix}
\]

In (9), the regression coefficient vector p_1 and r_1 can be expressed as (10).

\[
\begin{bmatrix} p_1 = X_1^\top g_1 / \|g_1\| \\ r_1 = Y_1^\top g_1 / \|g_1\| \end{bmatrix}
\]

3) Replace X_0 and Y_0 with X_1 and Y_1, repeat the above steps until the cross validation principles meet.

4) After the above steps, h components can be got, which are expressed as g_1, g_2, \ldots, g_h. Then calculate the regression equation between Y_0 and g_1, g_2, \ldots, g_h, which can be shown as (11).

\[
Y_0 = r_1 g_1 + r_2 g_2 + \cdots + r_h g_h.
\]

Because g_1, g_2, \ldots, g_h are the linear combination of X_0, (11) can also be expressed as (12).

\[
Y_0 = X_0 (r_1 \omega_1^* + \cdots + r_h \omega_h^*).
\]

In (12),

\[
\omega_h^* = \prod_{j=1}^{h-1} (I - \omega_j p_j^\top) \omega_h.
\]
And I is the unit matrix.

Express α_j with

$$\alpha_j = \sum_{n=1}^{k} r_n \omega_{nj} \ast,$$

and (12) can be changed to be (13).

$$Y_0 = \alpha_1X_{01} + \alpha_2X_{02} + \cdots + \alpha_5X_{05}. \quad (13)$$

In (13), $X_{0j} (j = 1, \ldots, 5)$ is the j_{th} column of X_0.

5) By the inverse processes of standardization, the regression equation of Y on X can be expressed as (14).

$$Y = \beta_1X_1 + \beta_2X_2 + \cdots + \beta_5X_5. \quad (14)$$

In (14), $\beta_j (j = 1, \ldots, 5)$ is the regression coefficient.

In step 3), the components should meet cross validation principles. That is to say, there is no need to use all components in partial least squares regression algorithm and the number of components can be determined as follows.

In (15), suppose that the components are g_1, g_2, \ldots, g_h and \hat{y}_{jh} is the value calculated by regression equation which is got using all samples. And $\hat{y}_{h(-j)}$ is the fitting value of j_{th} sample using the regression equation which is calculated except j_{th} sample.

$$\begin{align*}
S_h &= \sum_{j=1}^{h} (y_j - \hat{y}_{j})^2 \\
P_h &= \sum_{j=1}^{h} (y_j - \hat{y}_{h(-j)})^2. \\
Q_h^2 &= 1 - \frac{P_h}{S_{h-1}}
\end{align*} \quad (15)$$

Generally, if Q_h is larger than 0.0975, the contribution of the added component is significant and the component should be considered.

After the above processes, the five unknown parameters are calculated and the leakage inductance L_σ can be calculated according to (16).

$$L_\sigma = L_1 + k^2 L_2. \quad (16)$$

3. Adaptive detection of transformer winding deformation

In the traditional detection method, the uncertainty of leakage inductance caused by measurement errors is not concerned, which may cause wrong results and has low sensitivity.
In this paper, an adaptive algorithm is proposed to improve the accuracy of winding deformation detection.

3.1. Determination of the number of samples in a detection time window

To detect winding deformation, the sample number in a detection time window should be determined first, which should ensure the random characteristics be fully represented. Using the Monte Carlo thoughts, the number is determined through the analysis of distribution of the leakage inductance.

Suppose there are \(m\) leakage inductance samples in the detection time window, divide the time window into \(m\) intervals, construct Equation (6) using voltage and current data at different time and calculate the unknown parameters. Therefore, the leakage inductance sequence can be expressed as \(L_\sigma = \{L_{\sigma 1}, L_{\sigma 2}, \ldots, L_{\sigma m}\}\). Calculate the mean value \(\bar{L}_\sigma\), the standard deviation \(S_{L_\sigma}\) and count the number \(m_1\) in the interval \((\bar{L}_\sigma - S_{L_\sigma}, \bar{L}_\sigma + S_{L_\sigma})\). Then the value of \(P\) is calculated according to (17). Compare \(P\) with \(P_{set}\) to determine the feasibility of the samples. If \(P < P_{set}\), increase \(m\) and repeat the above processes until \(P\) is larger than \(P_{set}\). According to the “3σ” criterion in normal distribution, \(P_{set}\) is set to be 0.683 in this paper.

\[
P(\bar{L}_\sigma - S_{L_\sigma} < L_\sigma < \bar{L}_\sigma + S_{L_\sigma}) = \frac{m_1}{m}.
\]

(17)

In (17), \(P\) is the cumulative probability of \(L_\sigma\) in the interval \((\bar{L}_\sigma - S_{L_\sigma}, \bar{L}_\sigma + S_{L_\sigma})\). The parameter \(m_1\) is the number that \(L_\sigma\) fall in the interval \((\bar{L}_\sigma - S_{L_\sigma}, \bar{L}_\sigma + S_{L_\sigma})\).

After the above calculation processes, the number \(N_w\) in a detection time window can be set to be larger than \(m_1\), which can represent the stochastic characteristics of the leakage inductance.

3.2. Processes of transformer winding deformation detection

Suppose the voltage and current of a single-phase two-winding transformer are \(u_1, u_2, i_1\) and \(i_2\), and there are \(N_w\) samples in a detection time window. The processes of winding deformation detection are as follows.

1) Divide the detection time window into \(N_w\) intervals, calculate the leakage inductance using voltage and current data at different moments by (6) based on the partial least squares regression algorithm.

2) According to (18), calculate the leakage inductance changes \(\Delta L_\sigma\).

\[
\Delta L_\sigma (l) = L_\sigma (l + 2 \cdot N_w) - L_\sigma (l) \\
(l = 1, \ldots, N_w).
\]

(18)

3) Calculate the probability density function of the \(\Delta L_\sigma\) samples in a time window, and estimate the bilateral confidence interval under a certain confidence, which have \(N_{w1}\) samples.

4) Construct the criteria to detect winding deformation, as shown in (19).
In (19), m_{sj} is the mean data of leakage inductance changes in the confidence interval of the jth time window and ε_1 is the threshold value; N_w represents the number of samples in the confidence interval. When the mean values in three consecutive time windows are larger than ε_1, the parameter $D_{i\sigma}$ is equal to 1, which indicates that the winding deformed.

5) Move the time window at the interval of $N_w/2$ data points, adjust the threshold value and repeat steps 1)-4) to detect the change of leakage inductance in new time windows.

In the detection method, the determination of the threshold value is the key point to influence the accuracy. In order to eliminate the subjectivity, the threshold value is determined using historical data adaptively.

According to (19), calculate the mean data of leakage inductance changes in history time windows. Analyze the mean data and get its changing range $[m_{s1}, m_{s2}]$. The threshold value ε_1 is set according to (20) considering a margin coefficient.

$$\varepsilon_1 = k \cdot \max(|m_{s1}|, |m_{s2}|).$$

In (20), k is the margin coefficient and its value is equal to the ratio of largest and second largest data of the absolute value.

Therefore, the winding deformation can be detected by comparing m_{sj} and ε_1. When m_{sj} is equal to ε_1, the minimum change range δ can be got according to (21).

$$\delta = \varepsilon_1.$$

In order to evaluate the severity of winding deformation, the leakage inductance change range is an important index. In normal operation process of transformers, the mean data calculated by (19) is about 0. After winding deformation, the mean data changes from 0 to a certain stable data $d_{L\sigma}$. The transition processes have three different forms according to the relationship between the deformation time and time window, as shown in Figure 3. With the moving of time window, the mean data of leakage inductance changes transits from $d_{L\sigma}$ to 0. The winding deformation in future time windows can be detected.

![Fig. 3. Mean data of leakage inductance changes in different time windows](image-url)
In Figure 3, j_1 is the label of the time window whose $D_{e\sigma}$ is equal to 1. The leakage inductance change range M can be calculated by (22).

$$M = dL_\sigma.$$ \hspace{1cm} (22)

The detection method adjusts the threshold value and the margin coefficient based on historical data continuously, which can reduce the omission and error rate. The detection precision is high and the change range of leakage inductance can be obtained, which provides a reference for maintenance strategy.

4. Experiment analysis

In order to verify the method proposed in this paper, the stochastic characteristics of identified leakage inductance is analyzed and a two-winding transformer is built to simulate the winding deformation.

4.1. Analysis of leakage inductance

In Figure 4, the diagram of a three-phase two-winding transformer is illustrated. The type of the transformer is SFP10-370000/220, the rated capacity is 370 MVA, the voltage of two windings is $242 \pm 2 \times 2.5\% / 20$ kV, and the short-circuit impedance percentage U_d is equal to 18%. The connection mode of the windings is YN, d11.

![Fig. 4. A two winding three-phase transformer with Y/Δ connection](image)

Suppose the three-phase windings of the transformer are symmetrical, the circuit equation of the transformer is expressed by (23).

$$
\begin{align*}
N_1 \frac{d\Phi_{\lambda\lambda}}{dt} + L_\lambda \frac{di_\lambda}{dt} + R_i i_\lambda &= u_\lambda \\
N_1 \frac{d\Phi_{\lambda\beta}}{dt} + L_\lambda \frac{di_\beta}{dt} + R_i i_\beta &= u_\beta \\
N_2 \frac{d\Phi_{\lambda\lambda}}{dt} + L_\lambda \frac{di_\lambda + i_p}{dt} + R_2 (i_\lambda + i_p) &= u_\lambda - u_\lambda \\
N_2 \frac{d\Phi_{\lambda\beta}}{dt} + L_\lambda \frac{di_\beta + i_p}{dt} + R_2 (i_\beta + i_p) &= u_\beta - u_\beta.
\end{align*}
$$ \hspace{1cm} (23)
In (23), the i_p is the circular current; Φ_{Aa} and Φ_{Bb} are the flux in the windings; i_a, i_b and i_c are the current in the delta connection windings; k, L_1, R_1, L_2 and R_2 are the unknown parameters; u_A, u_B, u_C, u_a, u_b, u_c and i_A, i_B, i_C, i_a, i_b, i_c are the measured voltage and current data.

The formula (24) can be got after the elimination of the flux Φ_{Aa}, Φ_{Bb} and i_p in (23).

\[
\begin{align*}
 u_A - u_B - k(2u_A - u_B - u_c) &= L_1 \frac{di_A - i_B}{dt} + \\
 R_1(i_A - i_B) + kL_2 \frac{di_B}{dt} &= kR_2 \cdot i_{L2}.
\end{align*}
\]

(24)

According to the above method, the number of samples in a time window can be set 500. The leakage inductance calculated by partial least squares regression algorithm using electrical information is shown in Figure 5a). Count the number of leakage inductance samples in different sections and draw the distribution histogram, as shown in Figure 5b).

Due to the environment and measurement errors, the calculated leakage inductance data fluctuates and follows normal distribution approximately. The mean value \bar{L}_c and the standard deviation value σ_{Lc} are 0.11486 H and 0.036744.
4.2. Winding deformation detection

To simulate the transformer winding deformation, a single-phase two winding transformer is established, as shown in Figure 6. The high and low voltage windings are arranged up and down. The low voltage winding is composed of 11 pies and its number of turns is 88. The high-voltage winding is composed of 13 pies, and there are 416 turns. By different taps, the low voltage winding is divided into WL1-WL4 segments, and the high voltage winding is divided into WH1-WH11 segments. The specific number of turns is shown in Table 1.

<table>
<thead>
<tr>
<th>Segments</th>
<th>Turns</th>
<th>Segments</th>
<th>Turns</th>
</tr>
</thead>
<tbody>
<tr>
<td>WL1</td>
<td>8</td>
<td>WH6</td>
<td>8</td>
</tr>
<tr>
<td>WL2</td>
<td>72</td>
<td>WH7</td>
<td>16</td>
</tr>
<tr>
<td>WL3</td>
<td>4</td>
<td>WH8</td>
<td>192</td>
</tr>
<tr>
<td>WL4</td>
<td>4</td>
<td>WH9</td>
<td>64</td>
</tr>
<tr>
<td>WH1</td>
<td>8</td>
<td>WH10</td>
<td>24</td>
</tr>
<tr>
<td>WH2</td>
<td>24</td>
<td>WH11</td>
<td>8</td>
</tr>
<tr>
<td>WH3</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WH4</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WH5</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WH6</td>
<td>32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the experiment, the low-voltage windings are composed of WL2 and WL3. The high voltage winding is composed of WH2, WH1, WH3, WH6, WH9, WH8 and WH10. The voltage of the two windings is 220/95 V and the rated capacity is 2 kVA. The sample frequency is 5 kHz and the length of a time window is 0.2 s.

Collect the voltage and current signal in continuous 4 seconds, and add white noise to simulate the real operation conditions. The number of samples in a time window can be set 200 according to (17). Then the leakage inductance in 4 s identified by the partial least squares regression algorithm is shown in Figure 7.

Calculate the changes by (18) and set the confidence level to be 0.9. After the calculation of the probability density function of the changes in the time window, the samples in the confidence interval are determined. Analyze the calculated mean data and obtain the range $[m s_1, m s_2]$. Therefore, the threshold value ε_1 and minimum detection range δ can be calculated by (20) and (21), which are shown in Table 2.

<table>
<thead>
<tr>
<th>N_w</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[m s_1, m s_2]$</td>
<td>$[-0.00561, 0.00527]$</td>
</tr>
<tr>
<td>ε_1</td>
<td>0.00596</td>
</tr>
<tr>
<td>δ</td>
<td>0.00596</td>
</tr>
</tbody>
</table>
To simulate transformer winding deformation caused by short-circuit current, three experiments are designed through different winding connection: (1) The segment WH₁ of high voltage winding is replaced by WH₄, which simulates winding axial downward displacement; (2) WH₃ is replaced by WH₁ to simulate axial displacement; (3) The segments WL₃ of low voltage winding is replaced by WL₄ to simulate winding radial deformation.

Analyze the 4000 leakage inductance samples in the three experiments, the sequence of the leakage inductance and the mean data of the leakage inductance changes are shown in Figure 8 (a), (b), (c).

Compare the mean data of leakage inductance changes in Figure 8 a), b), c) with the threshold value $\epsilon₁$ in Table 2. The parameter DL_{σ} is equal to 1 at 17th, 18th, 18th time window respectively, which shows that the winding deformation is detected and the effectiveness of the proposed method is verified. Especially in experiment (3), when the variation in the leakage inductance is about 0.5%, this method is still effective.

In Table 3, the range of leakage inductance changes M in the three experiments are shown.

<table>
<thead>
<tr>
<th></th>
<th>a)</th>
<th>b)</th>
<th>c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M(mH)</td>
<td>0.0846</td>
<td>0.0577</td>
<td>0.0133</td>
</tr>
</tbody>
</table>

5. Conclusion

To detect the transformer winding deformation, a method based on the leakage inductance considering the stochastic characteristics is proposed. The leakage inductance is identified by the partial least squares regression algorithm, which can ensure the accuracy of the results. According to the probability distribution characteristics of the leakage inductance, the number of samples is determined in the time window, which can show its fluctuation characteristics.
The threshold value can be adjusted automatically according to the historical data of leakage inductance changes and the detection sensitivity is high. The experimental results verify the effectiveness of the proposed method.
References

