Zdzisław Jan Małecki, Zbigniew Staszewski, Sergey Anisimov

WPŁYW NAPOWIETRZANIA WÓD ZBIORNIKA RETENCYJNEGO GOŁUCHÓW K/KALISZA W PÓŁRZE WIEŻY PRZELEWOWEJ

Streszczenie: Zbiornik retencyjny Gołuchów o pow. 51,5 ha i pojemności 1,385 mln m³ zbudowano w 1970 r. na rzece Ciemnej (Trzemniej) w odległości 15 km od Kalisza w gminie Gołuchów. Zaporę zbiornika usytuowano 5,6 km biegu rzeki Ciemnej (Trzemniej), kilkaset metrów powyżej wsi Gołuchów. Do podstawowych funkcji zbiornika zalicza się: ładowanie fali powodziowej, gromadzenie wody pod potrzeby rolnictwa, gospodarkę rybacką, sportu i wypoczynku. W 1994 r. w pobliżu wieży przelewowej zbiornika wykonano instalacje napowietrzające typu Diflox – 600, dwie baterie, cztery urządzenia (Diflox). Napowietrzenie w tlen warstw przydennych nie spełnia w pełni założeń projektowych. Tylko w niemalznym stopniu zauważono zahamowanie wydzielania się stawkowodoru i fosforu z osadów dennych w pobliżu zapory.

Słowa kluczowe: zbiornik retencyjny, napowietrzenie, zapora, wieża przelewowa, osady denne.

WPROWADZENIE

Wielkopolska należy do regionów o najmniejszych zasobach wody w kraju i Europie i charakteryzuje się najsniższymi opadami w kraju wynoszącymi średnio rocznie ok. 450 do 650 mm, w latach suchych nawet poniżej 350 mm. Zlewnia Prosty, największej rzeki południowej Wielkopolski, należy do dorzecza II rzędu Warty i stanowi dorzecze III rzędu Odry. Według regionalizacji fizyczno-geograficznej Polski J. Kondrackiego tereny południowej Wielkopolski w większości włączone są do makroregionu Nizin Południowowielkopolskiej oraz stanowią bezjeziorny obszar zlokalizowania środowiskowego, pozbawiony naturalnych zbiorników wód stojących, a zasoby wód płynących tego regionu ocenia się jako najniższe w kraju. Świadczy o tym: współczynniki nieregularności przepływu średniomiesięcznych Prosty (3,50–4,50) i średnich rocznych (1,5–2,5) a także niska wartość średniego spływu jednostkowego dla rzeki Prosty w Kaliszu 4,1 dm³/s/km², przy odpływie rocznym całkowitym wynoszącym od 402–550 mln m³ [Małecki Z.,2008].

Jednocześnie rzeka Prosty charakteryzuje się znacznymi przyborami wód w określe wiosny, wskutek topnienia śniegu, oraz w okresie lata – jako skutek deszczu tzw. [prof. nadz. dr hab. inż. Zdzisław Jan MAŁECKI – Instytut Badawczo-Rozwojowy Inżynierii Lądowej i Wodnej „Euroexbud” w Kaliszu.]

mgr inż. Zbigniew STASZEWSKI – Instytut Badawczo-Rozwojowy Inżynierii Lądowej i Wodnej „Euroexbud” w Kaliszu.

prof. dr hab. inż. Sergey ANISIMOV – Politechnika Wrocławska – Sankt Petersburg (Rosja).

Na terenie powiatu pleszewskiego w zlewni Prosyny zlokalizowany jest zbiornik retencyjny Gołuchów (mapa 1, fot.1, fot. 2). Zbiornik retencyjny położony jest na obszarze chronionego krajobrazu „Dolina rzeki Ciemnej (Trzemnej)”.

CHARAKTERYSTYKA MORFOLOGICZNA ZBIORNIKA GOŁUCHÓW

Zbiornik retencyjny Gołuchów w gminie Gołuchów, oddany do eksploatacji w roku 1970, zbudowano na rzecz Ciemnej (Trzemnej) i dopływającym rowie Jedlec (lewym dopływem Prosny (mapa 1).

Mapa 1. Wycinek mapy zbiornika Gołuchów
Do podstawowych funkcji zbiornika zalicza się:
- łagodzenie fali powodziowej,
- gromadzenie wody na potrzeby rolnictwa, gospodarki rybackiej, sportu i wypoczynku.

Podstawowe dane morfologiczne i hydrologiczne zbiornika Gołuchów przy normalnym poziomie piętrzenia – 110 m n.p.m. wybrane parametry zbiornika są następujące:
- powierzchnia zalewu – 51,5 ha,
- pojemność – 1,385 mln m³,
- długość – 2,8 km,
- średnia szerokość – 200 m,
- średnia głębokość – 2,7 m,
- przepływ średni roczny Q = 0,37 m³/s,
- odpływ średni roczny – 11,67 mln m³.

Zaporę usypano z ziemi jednorodnej na przepuszczalnym podłożu. Rzędna korony zapory – 115,5 m n.p.m.; wysokość – 7,5 m; szerokość – 6,5 m. Po koronie zapory przebiega jednopasmowa droga kołowa o szerokości 3,5 m i chodnikiem od strony zbiornika. W 1994 roku na rzece Ciemnej powyżej zbiornika, w miejscowości Czerminek

Mapa 2. Zbiornik Gołuchów
wybudowano osadnik ekologiczny o powierzchni 1 ha i objętości 8 tys. m³, długości 130 m, szerokości 80 m składający się z komory A o średniej głębokości 1,25 m, biofiltru trzcinowego o średniej głębokości 0,5 m oraz komory B o średniej głębokości 1,5 m. W założeniach projektowych przyjęto, że trzcina i głony jako filtry biologiczne mają częściowo redukować biogeny. Osadnik jest wykorzystywany od wczesnej wiosny do późnej jesieni. W następnie zamkniętej w tym okresie zastawki powodującej przepływ rzeki Ciemnej przez osadnik, w przypadku przepływu wód wezbraniowych może dochodzić do naruszenia stabilności osadów w osadniku ekologicznym. Zastosowano także w zatoce Jedlec i Czerminek (1994 r.) bariery z biostruktur (B 10 HYDRO) składających się z pasków folii propylenowej o wymiarach 100 x 100 x 16 cm.

CHARAKTERYSTYKA URZĄDZEŃ NAPOWIETRZAJĄCYCH DIFLOX – 600

W roku 1994 zainstalowano, tuż przy wieży przelewowej zbiornika (przy zaporze), urządzenia napowietrzające typu Diflox – 600, produkcji firmy Eko-Tech z Warszawy. Instalacja napowietrzająca składa się z dwóch baterii, każda po cztery urządzenia Diflox. Wydajność urządzenia wynosi od 35 do 200 m³ powietrza na godzinę przy założeniu, że 20–60% tlenu włączanego powietrza ulegnie rozpuszczaniu w wodzie. W założeniach przyjęto, że napowietrzałne miało dostarczyć tlen do warstw przydennych rumowiska (osadów) a tym samym ograniczyć wydzielanie siarkowodoru i fosforu z wody. Ponadto urządzenie Diflox miało również wywołać cyrkulację wody w akwenie i spowodować przekształcenie zakwitów sinicowych w zakwity mniej szkodliwych zielenic.

Osady dennne w czaszach zbiornika są zgromadzone na całej powierzchni i mają znaczną miąższość (grubość) nawet w zatokach Czerminek i Jedlec. Prowadzona po kilkudniowym napowietrzaniu (sierpień 2011 r.) badania przy zaporze, w bezpośrednim sąsiedztwie instalacji napowietrzającej wykazały, że deficyt tlenowy przy dniu szybko się odnawia. Ponadto stwierdzono, że wpływ instalacji napowietrzającej ogranicza się do niewielkiej powierzchni przy zaporze. Urządzenia zainstalowane są za wysoko, a nurt wody dopływającej do upustów dennych jest stosunkowo duży co skutkuje prawdopodobnie tym, że tlen nie dochodzi do samych osadów dennych. Jeżeli zamontowano by

Tabela 1. Ocena wpływu napowietrzenia wód w pobliżu wieży przelewowej

<table>
<thead>
<tr>
<th>Wskaźnik</th>
<th>Jednostka</th>
<th>Ilość pomiarów</th>
<th>średnia wartość nad dnem</th>
<th>średnia wartość na powierzchni</th>
</tr>
</thead>
<tbody>
<tr>
<td>BZT₅</td>
<td>mg O₂/l</td>
<td>3</td>
<td>3,91</td>
<td>2,32</td>
</tr>
<tr>
<td>ChZT-Cr</td>
<td>mg O₂/l</td>
<td>3</td>
<td>26,5</td>
<td>23,2</td>
</tr>
<tr>
<td>Tlen rozpuszczony</td>
<td>mg O₂/l</td>
<td>3</td>
<td>8,66</td>
<td>8,53</td>
</tr>
<tr>
<td>Fosfor ogólny</td>
<td>mg P/l</td>
<td>3</td>
<td>0,199</td>
<td>0,194</td>
</tr>
<tr>
<td>Azot ogólny</td>
<td>mg N/l</td>
<td>3</td>
<td>11,02</td>
<td>10,82</td>
</tr>
</tbody>
</table>
urządzenia bezpośrednio w pobliżu upustów dennych, to prawdopodobnie doszłoby do znacznego podwywania osadów dennych przez Difloxy i transportowania ich upustami dennymi do koryta rzeki Ciemnej (Trzemnej) poniżej zapory.

WNIOSKI

1. Zbiornik Gołuchów wpisuje się w obieg substancji biogenicznych w system rzeczno-zbiornikowy. Ze względu na stosunkowo nie dużą pojemność, akwen tylko w niewielkim stopniu pełni rolę osadnika.

2. Dolyw pierwiastków biogennych do zbiornika jest powodowany głównie przez ścieki i nawożenie pól.

3. W okresach letnich sinice tworzą masowe zakwity.

5. Działanie instalacji napowietrzającej (aeracyjnej) nie daje wymiernych wyników, utrzymuje się deficyt tlenuowy, jakość wód w zbiorniku nie ulega poprawie.

6. Praca urządzeń napowietrzających w znacznej mierze jest obciążona dużymi kosztami eksploatacyjnymi, a wpływ działania instalacji ogranicza się do niewielkiej powierzchni przy zaporze.

7. Niewielka głębokość akwenu powoduje także, że wody są mieszanane przez falowanie hydrodynamice co skutkuje wtórnym zasilaniem wewnętrznym miogenami pochodzącymi z osadów dennych.

LITERATURA

Fot. 1. Zbiornik Gołuchów patrząc od strony zapory

Fot. 2. Zbiornik Gołuchów od strony zachodniej, w głębi widoczna zapora i wieża przelewowa
THE IMPACT OF WATER AERATION OF THE RETENTION RESERVOIR IN GOLUCHÓW NEAR KALISZ IN THE VICINITY OF THE OVERFLOW TOWER

Summary
The retention reservoir in Goluchów covering 51.5 ha and of the capacity of 1,385 mln m³ was built in 1970 on the Cienna (Trzemma) river 15 km from Kalisz in Goluchów borough. The dam is situated 5.6 km of the river Cienna course and several hundred meters above Goluchów village. The basic functions of the reservoir are the following: minimizing flood wave, gathering water for agricultural needs, fishing, sport and recreation. In 1994 aeration installations Diflo – 600, two batteries and four units (Diflox), were made near the reservoir overflow tower. Aeration of the bottom layers does not fully meet the project expectations. Only slight curtailment of hydrogen sulfide and phosphorus discharge from the bottom sediment has been observed near the dam.

Key words: retention reservoir, aeration, dam, overflow tower, bottom sediment

DER EINFLUSS DER WASSERBELÜFTUNG DES STAUBECKENS IN GOLUCHÓW/KALISZ IN DER NÄHE DES ÜBERLAUFTURMS

Zusammenfassung

Schlüsselworte: Staubecken, Belüftung, Staudamm, Überlauf, Sedimente.