The platform's new version, with full-text resources only, is now available.
Go to


Preferences help
enabled [disable] Abstract
Number of results
2017 | Vol. 25, no. 3 (123) | 106--111
Article title

Antibacterial and Wrinkle Resistance Improvement of Nettle Biofibre Using Chitosan and BTCA

Title variants
Polepszenie właściwości antybakteryjnych i odporności na gniecenie włókien z pokrzyw przy użyciu chitozanu i BTCA
Languages of publication
In this study, the possible improvement of the antibacterial and wrinkle resistance performance of 100% nettle fabrics was investigated. To realise this aim, antibacterial and wrinkle resistance finishing processes were applied. 1,2,3,4-Butanetetracarboxylic acid (BTCA) and sodium hypophosphite (SHP) were used to impart the wrinkle resistance property. Moreover chitosan was incorporated in the finishing bath for the antibacterial property. The effects of respective treatments on the physical properties were determined and compared along with their antibacterial activity. BTCA concentration in the solutions influenced the physical properties of the nettle fabrics and 6% BTCA usage was found to be the optimum concentration rate. The addition of BTCA to the chitosan caused an improvement in the wrinkle resistance and slightly softer handle, in comparison with pure chitosan treatment; however, the strength loss slightly increased, as expected. The FTIR-ATR spectra showed a new peak that confirmed the ester linkage formation and crosslinking reaction.
W pracy zbadano właściwości antybakteryjne i odporność na gniecenie tkanin otrzymanych z włókien pokrzywy. W celu nadania tkaninom odporność na gniecenie użyto kwasu 1,2,3,4-butanotetrakarboksylowego (BTCA) i podfosforynu sodu (SHP). Ponadto w celu podwyższenia właściwości antybakteryjnych tkanin do kąpieli wykończeniowej dodano chitozan. Dodanie BTCA spowodowało poprawę odporności na gniecenie i delikatniejszy chwyt tkaniny, jednakże poskutkowało spadkiem wytrzymałości, w porównaniu do tkaniny z pokrzyw niepoddanej obróbce. Tkanina wykończona kombinacją chitozanu, BTCA i SHP wykazała odpowiednią odporność na gniecenie, wytrzymałość na rozciąganie i delikatny chwyt wraz z poprawioną aktywnością antybakteryjną.

Physical description
Bibliogr. 45 poz., rys., tab.
  • Department of Textile Engineering, Pamukkale University, Denizli 20070, Turkey
  • Department of Textile Engineering, Pamukkale University, Denizli 20070, Turkey
  • Department of Textile Engineering, Pamukkale University, Denizli 20070, Turkey,
  • 1. Asokan P, Firdoous M and Sonal W. Properties and potential of bio fibres, bio binders, and bio composites. Rev Adv Mater Sci 2012; 30: 254-261.
  • 2. Reddy N and Yang Y. Biofibers from agricultural by products for industrial applications. Trends in Biotechnology 2005; 23(1): 22–27.
  • 3. John MJ and Thomas S. Biofibres and biocomposites. Carbohydrate Polymers 2008; 71: 343–364.
  • 4. Bodros E and Baley C. Study of the tensile properties of stinging nettle fibres (Urtica dioica). Materials Letters 2008; 62: 2143-2145.
  • 5. Bacci L, Lonardo SD, Albanese L, Mastromei G and Perito B. Effect of different extraction methods on fiber quality of nettle (Urtica dioica L.). Textile Research Journal 2010; 81(8): 827-837.
  • 6. Kurban M, Yavaş A and Avinç OO. Nettle fibers and their properties. Electronic Journal of Textile Technologies 2011; 5(1): 84-106.
  • 7. Huang G. Nettle (Urtica cannabina L) fibre, properties and spinning practice. Journal of the Textile Institute 2005; 96(1): 11-15.
  • 8. Swicofil, Accessed on 2014.
  • 9. Kurban M. Pre-treatment of Nettle Fibre Fabrics. MSc Thesis, Pamukkale University, Turkey, 2012.
  • 10. Schindler WD and Hauser PJ. Chemical Finishing of Textiles. Cambridge: Woodhead Publishing, 2004.
  • 11. Lam YL, Kan CW and Yuen CWM. Wrinkle-resistant finishing of cotton fabric with BTCA–the effect of co-catalyst. Textile Research Journal 2010; 81(5): 482–493.
  • 12. Harifi T and Montazer M. Past, present and future prospects of cotton cross-linking: New insight into nanoparticles. Carbohydrate Polymers 2012; 88: 1125–1140.
  • 13. Perumalraj R. Single-stage antimicrobial and crease proof finishing of cotton materials. Journal of Industrial Textiles 2013; 42(4): 376-391.
  • 14. Karthik T, Rathinamoorthy R and Murugan R. Enhancement of wrinkle recovery angle of cotton fabric using citric acid cross-linking agent with nano-TiO2 as a co-catalyst. Journal of Industrial Textiles 2012; 42(2): 99-117.
  • 15. Zhou W, Yang CQ and Lickfield GC. Mechanical strength of durable press finished cotton fabric Part V: Poly(vinyl alcohol) as an additive to improve fabric abrasion resistance. Journal of Applied Polymer Science 2004; 91: 3940–3946.
  • 16. Refaie R. Polymeric additives for improving performance properties of cotton fabric crosslinked with 1,2,3,4 butane tetra carboxylic acid. In: 8th Arab International Conference on Polymer Science & Technology, 2005.
  • 17. Fouda MMG, El Shafei A, Sharaf S and Hebeish A. Microwave curing for producing cotton fabrics with easy care and antibacterial properties. Carbohydrate Polymers 2009; 77, 651–655.
  • 18. Sauperl O and Stana-Kleinschek K. Differences between cotton and viscose fibers crosslinked with BTCA. Textile Research Journal 2010; 80(4): 383-392.
  • 19. Dehabadi VA, Buschmann HJ and Gutmann JS. Study of easy care and biostatic properties of finished cotton fabric with polyamino carboxylic acids. The Journal of the Textile Institute. 2013; 104(4): 414–418.
  • 20. Shekarriz S, Cohen P, Carr CM, Mitchell R and Jones C. Surface chemical analysis of 1,2,3,4-butanetetracarboxylic acid modified cotton. Journal of Materials Science 2003; 38: 2945-2951.
  • 21. Zhou LM, Yeung KW, Yuen CWM and Zhou X. Characterization of ramie yarn treated with sodium hydroxide and crosslinked by 1,2,3,4-butanetetracarboxylic acid. Journal of Applied Polymer Science 2004; 91: 1857-1864.
  • 22. Hebeish A, Hashem M, Abdel-Rahman A and El-Hilw ZH. Improving easy care nonformaldehyde finishing performance using polycarboxylic acids via precationization of cotton fabric. Journal of Applied Polymer Science. 2006; 100: 2697–2704.
  • 23. Li W, Xu X, Chen S, Zhou X, Li L, Chen D and Wang X. Esterification crosslinking structures of rayon fibers with 1,2,3,4-butanetetracarboxylic acid and their waterresponsive properties. Carbohydrate Polymers 2008; 71: 574-582.
  • 24. Mostafa KhM, Samarkandy AR and El-Sanabary AA. Using persulfate oxidized chitosan as a novel additives in easy-care finishing for cotton textiles. PolymerPlastics Technology and Engineering 2009; 48(2): 130-135.
  • 25. Dehabadi VA, Buschmann H-J and Gutmann JS. Durable press finishing of cotton fabrics with polyamino carboxylic acids. Carbohydrate Polymers 2012; 89: 558– 563.
  • 26. Vasluianu E, Popescu V, Grigoriu A, Forna NC and Sandu I. Comparative study concerning the FTIR analysis and the performances of chitosan-based wrinkleproofing agents. Rev Chim 2013; 64(10): 1104-1115.
  • 27. Bajaj P. Finishing of textile materials. Journal of Applied Polymer Science 2002; 83: 631–659.
  • 28. El-tahlawy KF, El-bendary MA, Elhendawy AG and Hudson SM. The antimicrobial activity of cotton fabrics treated with different crosslinking agents and chitosan. Carbohydrate Polymers 2005; 60: 421-430.
  • 29. Dehabadi VA, Buschmann H-J and Gutmann JS. Durable press finishing of cotton fabrics: An overview. Textile Research Journal 2013; 83(18): 1974-1995.
  • 30. Oktem T. Surface treatment of cotton fabrics with chitosan. Coloration Technology 2003; 119: 241-246.
  • 31. Aly AS, Hashem A and Hussein SS. Utilization of chitosan citrate as crease-resistant and antimicrobial finishing agent for cotton fabric. Indian Journal of Fibre & Textile Research 2004; 29: 218-222.
  • 32. Montazer M and Afjeh MG. Simultaneous X-linking and antimicrobial finishing of cotton fabric. Journal of Applied Polymer Science 2007; 103: 178-185.
  • 33. Demir A, Arik B, Ozdogan E and Seventekin N. A new application method of chitosan for improved antimicrobial activity on wool fabrics pretreated by different ways. Fibers and Polymers 2010; 11(3): 351-356.
  • 34. Arik B and Seventekin N. Evaluation of antibacterial and structural properties of cotton fabric coated by chitosan/titania and chitosan/silica hybrid sol-gel coatings. Tekstil ve Konfeksiyon 2011; 2: 107-115.
  • 35. Hebeish A, Abdel-Mohdy FA, Fouda MMG, Elsaid Z, Essam S, Tammam GH and Drees EA. Green synthesis of easy care and antimicrobial cotton fabrics. Carbohydrate Polymers 2011; 86: 1684–1691.
  • 36. Bhuiyan MAR, Shaid A, Bashar MM, Haque P and Hannan MA. A novel approach of dyeing jute fiber with reactive dye after treating with chitosan. Open Journal of Organic Polymer Materials 2013; 3: 87-91.
  • 37. Viju S and Thilagavathi G. Effect of chitosan coating on the characteristics of silkbraided sutures. Journal of Industrial Textiles 2013; 42(3): 256-268.
  • 38. Gaffer HE, Gouda M and Abdel-Latif E. Antibacterial activity of cotton fabrics treated with sulfadimidine azo dye/chitosan colloid. Journal of Industrial Textiles 2013; 42(4): 392-399.
  • 39. Kim YH, Nam CW, Choi JW and Jang J. Durable antimicrobial treatment of cotton fabrics using N-(2-Hydroxy)propyl-3-trimethylammonium chitosan chloride and polycarboxylic acids. Journal of Applied Polymer Science 2003; 88: 1567-1572.
  • 40. Sauperl O and Volmajer-Valh J. Viscose functionalisation with a combination of chitosan/BTCA using microwaves. Fibres & Textiles in Eastern Europe 2013; 21: 24-29.
  • 41. Sharaf S, Opwis K, Knittel D and Gutmann JS. Comparative investigations on the efficiency of different anchoring chemicals for the permanent finishing of cotton with chitosan. AUTEX Research Journal 2011; 11(2): 71-77.
  • 42. Cheng X, Ma K, Li R, Ren X and Huang TS. Antimicrobial coating of modified chitosan onto cotton fabrics. Applied Surface Science 2014; 309: 138-143.
  • 43. Ak FN. The effect of some weaving constructions on fabric performance properties. MSc Thesis, University of Cukurova, Turkey, 2006.
  • 44. Lam YL, Kan CW and Yuen CWM. Physical and chemical analysis of plasma-treated cotton fabric subjected to wrinkle-resistant finishing. Cellulose 2011; 18: 493-503.
  • 45. Surina R and Andrassy M. Effect of preswelling and ultrasound treatment on the properties of flax fibers cross-linked with polycarboxylic acids. Textile Research Journal 2013; 83(1): 66-75.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.