Warunki bezpiecznego prowadzenia prac makroniwelacyjnych z zastosowaniem materiału wybuchowego

Safety requirements of macro-levelling works by use of explosives

Mgr inż. Arkadiusz Grześkowiak*

Mgr inż. Sławomir Patła*

Mgr inż. Kamil Rogosz*

Treść: W artykule przedstawiono rozwiązania techniczno-organizacyjne poprawiające bezpieczeństwo prowadzenia prac makroniwelacyjnych z wykorzystaniem techniki strzałowej. Zebrane doświadczenia związane z udziałem przy projektowaniu oraz wykonywaniu prac wiertniczo-strzałowych w odkrywkowych zakładach górniczych, zweryfikowane pomiarami i oceną oddziaływań środowiskowych pozwoliły na określenie warunków efektywnego prowadzenia urabiania przy pomocy MW i zachowania bezpieczeństwa podczas wykonywania prac makroniwelacyjnych. Rozwiązania stosowane w ostatnich czasach w odkrywkowych zakładach górniczych oraz prowadzone badania i obserwacje pozwalają na weryfikację założeń projektów dotyczących usuwania zwiększych skał w pracach budowlanych i bieżącą kontrolę efektów strzelania.

Abstract: This paper presents organizational and technical solutions aiming at the improvement of safety of macro-levelling works carried out with the use of blasting techniques. Experience gained in designing and implementation of drilling and blasting works in open cast mining companies, verified by measurements and environmental impact assessments, allowed to define conditions for effective excavation with the use of explosives as well as to maintain safety during macro-levelling works. Analysis of solutions currently applied in open cast mines as well as research and observations enabled the verification of assumptions of projects of cohesive rocks removal during construction works and operational control of blasting effects.

Słowa kluczowe: surowce skalne, technika strzelnicza, górnictwo, makroniwelacja

Key words: rock raw materials, blasting techniques, mining, macro-levelling

1. Wprowadzenie

Usuwanie lub profilowanie zwięzłych warstw skalnych, wymaga użycia efektywnych metod strzałowych zapewniających bezpieczeństwo otoczeniu i przyлегłym obiektom. Celem realizacji takich prac jest równolegle spełnienie wymogów bezpieczeństwa w zakresie rozrzedu odłamków skalnych, powietrznej fali uderzeniowej, drgań paraesjmicznych oraz odspojenia, skruszenia i przemieszczenia skał. Ponadto przygotowanie i wykonanie odstrzałów musi się odbywać najpierw w czasie niedokładnym z odbywającymi się pracami (budowlanymi, pomiarowymi, dostawami materiałów, sprzętu itp.).

Skoordynowanie prac wiertniczo-strzałowych na ograniczonym terenie, wymaga dobrej organizacji i harmonogramu czynności. Próby usunięcia skał najmniejszym nakładem energii i środków kończą się najczęściej niepowodzeniem, uszkodzeniem sprzętu lub niebezpiecznymi zdarzeniami.

Do osiągnięcia założonych celów z powodzeniem wykorzystywane są sprawdzone i skuteczne metody prowadzenia robót wiertniczo-strzałowych, zaczerpnięte z odkrywkowych zakładów górniczych.

Zastosowanie na etapie projektowania, specjalistycznegoprogramowania komputerowego do analizy danych przestrzennych oraz użycie nowoczesnych materiałów wybuchowych i środków strzałowych, umożliwia precyzyjny dobór parametrów strzelania. Uwzględniając lokalizację i specyfikę przyлегłych obiektów podlegających ochronie, możliwa jest istotna redukcja niekorzystnych oddziaływań.

Prowadzenie bieżącego monitoringu oddziaływania drgań paraesjmicznych i cyfrowej rejestracji odstrzałów, pozwala na każdorazową analizę wyników oraz możliwość korekty parametrów i minimalizację zagrożeń w kolejnych odstrzałach.

Obiektami podlegającymi ochronie w trakcie realizacji makroniwelacyjnych robót strzałowych są najczęściej są-
siednie obiekty kubaturowe i liniowe, ale także maszyny i urządzenia budowlane oraz instalacje lub elementy przyrodz. Nowoczesne technologie prowadzenia makroniewła-cyjnych robót strażalowych łączą w sobie zaawansowane metody projektowania, analizy i monitoringu oddziaływań i wielokrotnie potwierdziły swą efektywność przy odpasjaniu i rozdabniowaniu skó w trakcie realizacji inwestycji drogo- wych czy wękopod rurociag czy fundamenty na terenach góreźnych. Stosowanie materiałów wybuchowych (MW) w robotach budowlanych regulują zapisy zawarte m.in. w odpowiednich rozporządzeniach (Dz.U. Nr 117 poz. 1007, Dz.U. 42 poz. 216).

2. Identyfikacja warunków geotechnicznych i ocena bu-dowy obiektów chronionych


Utrudnieniem przeprowadzenia robót strzałowych jest najczęściej blok lokalizacja obiektów wymagających szczególnej ochrony. Należy do nich elementy infrastruktury (rurociagi, podziemne i naziemne linie energetyczne), obiekty zabytówke i specjalne. Każdy z obiektów kubaturowych i liniowych charakteryzuje się najczęściej zróżnicowaną budową, stanem technicz- nym, lokalizacją względem rejonu projektowanych odstrzałów i wymaga indywidualnego podejścia pod kątem określenia odpowiedn provide na poszczególne oddziaływanie.


Odporność obiektów liniowych, gazociągów itp. określić jest na podstawie obliczeń wytrzymałościowych bądź literatury krajowej i zagranicznej (Krzewiński, Rakicki 2005, Strelec i in. 2011).

Prawidłowego zabezpieczenia obiektów chronio-nych konieczne jest czasem wykonanie osłon oraz ekranów obniżających niekorzystne efekty wybuchu i chroniące przed rozrzutem odlamków skalnych. Istotne jest poprawne zidentyfikowanie wszystkich obiektów chronionych leżą- cych w okolicy prowadzenia prac z użyciem MW, zarówno tych najbliższych, jak i położonych w dalszej odległości z uwzględnieniem ich odporności sejsmicznej. W przypadku obiektów szczególnie narażonych na oddziaływanie drgań zalecane jest przeprowadzenie inwentaryzacji i opisu stanu technicznego obiektów wraz z dokumentacją fotograficzną. Opracowanie takie zapewnia prawidłową ocenę powstałych ewentualnych uszkodzeń, stanowi także zabezpieczenie przed próbami nieuzasadnionych roszczeń.

3. Wyznaczenie stref bezpieczeństwa i dopuszczalnych wielkości ładunków MW

3.1. Drgania parasejsmiczne


3.2. Rozrzut odlamków skalnych

Konieczność zapewnienia bezpieczeństwa najbliższym obiektom przed rozrzutem odlamków skalnych stanowi ważny element projektu robót strzałowych i wymaga dotyczących zabezpieczeń. Rozwiązanie utrudnieć ze względu na ograniczenia związane z rozrzutem może być realizowane na trzy sposoby: objęcie rozrzutu danego obiektu pod warunkiem odpowiedniego zabezpieczenia tego obiektu i ludzi w czasie strzelania bądź też przygotowywaniem i prawa- dzeniem robót strzałowych w sposób zapewniający ograni- czoną strefę rozrzutu. Odlógłość strefy rozrzutu w zakładach góreźnych jest wyznaczana wg tabeli nr 1 w załączniku nr 4 do Rozporządzenia Dz. U. 2003 nr 72 poz. 655 w sprawie przechowywania i używania środków strzałowych i sprzętu strzałowego w zakładach góreźnych, dla której ze stosowa- nych metod strzelania ustalono stosunkowo duży promień strefy potencjalnego zagrożenia. Korzystnym rozwiązaniem jest wyznaczenie rzeczywistej strefy rozrzutu na podstawie badań i obliczeń wykonanych dla danych warunków geolo- gicznych i przewidywanej do zastosowania metody strzelania oraz określenie wartości granicznych parametrów mających istotny wpływ na wielkość tego oddziaływania.

Najpowszechniej stosowaną metodą strzelania przy pra- cach makroniewła-cyjnych jest metoda określana w góreźnicy jako strzelanie zwykłymi otworami strzałowymi (długość
otworu strzałowego L_s < 6m) pionowymi i odchylonymi od pionu nie więcej niż 20°, zwaną dalej metodą "zwyczajowych otworów. Metodę tę można podzielić na warianty ze względu na charakter odstrzału, uwzględniając liczbę płaszczyzn odsłonięcia. Przy pracach makronielakowych najczęściej występuje jedna płaszczyzna odsłonięcia (powierzchnia terenu - stop warstwy do usunięcia), analogicznie jak w przypadku udostępniania nowego poziomu w zakładzie górniczym. Strzelanie z więcej niż jedną płaszczyzną odsłonięcia stosowane jest w przypadku dużych miąższości usuwanego materiału. Specyficzna strzelanie makronielakowych polega na rozładowywaniu masuwy skalnej i wybraniu skruszonej skały do dna wykopu. Tak jak w przypadku zakładów górniczych, najczęściej wymagane jest odpowiednie rozdrobnienie i przemieszanie urobku.

W przypadku jednej płaszczyzny odsłonięcia, przemieszanie się odlamków skalnych może zawierać się w określonym przedziale kątowym: lina pionu - kierunek ruchu. Teoretycznie odlamki mogą być wywzucane w górę, pod warunkiem opadnięcia na usy, co wcale nie jest prosty do realizacji i łatwe. Głównym parametrem stosowanym przy projektowaniu odstrzałów jest ładunek jednostkowy q [kg/m³] wyrażany stosunkiem ilości MW na metr sześciennej caliszy. Przy poprawnym doborem ładunku jednostkowego głównymi czynnikami mającymi wpływ na możliwość powstania nadmiernego rozrzutu odlamków skalnych jest osłabienie caliszy w części przybitkowej oraz jakość i poprawność wykonania samej przybitki. Kluczowe znaczenie ma jednak prawidłowe rozpoznanie właściwości urabianej skały. Uzupełnieniem i weryfikacją tych informacji mogą być dane uzyskiwane w trakcie postępu wiercenia otworów. Dodatkowymi parametrami mającymi znaczący wpływ na rozrzut jest odległość płaszczyzny odsłonięcia od kolumny MW (zbiorzów) oraz ilość MW przypadająca na objętość skały na całej długości otworu strzałowego. W jednorodnych warunkach jest ona w przybliżeniu stała, jednak w przypadku np. dużej szczelinowatości górnotworu lub zjawisk krasowych może nastąpić miejscowe skumulowanie się, bądź migracja MW w szczelinę, stwarzając bezpośrednie zagrożenie nadmiernym rozrzutom.

W związku z dużym zasięgiem normatywnej strefy rozrzutu odlamków skalnych wg przepisów górniczych, bardzo często konieczne jest określenie granicznych parametrów robót wiertniczo-strzałowych zapewniających bezpieczeństwo w określonym rejonie na podstawie obliczeń teoretycznych i weryfikacji założeń podczas obserwacji odstrzałów.

4. Technologia robót strzałowych

Technologia urabiania lub rozładowania skał w trakcie makronielakacji polega najczęściej na prowadzeniu robót strzałowych zwykłymi otworami pionowymi i odchylonymi od pionu, odpalanych systemem nieelektrycznym. Do usuwania brył nadwymiarowych stosuje się młoty hydrauliczne lub, gdy jest taka możliwość, bryły te wywożone są w całości. Rozładowana i spękana skała jest w dalszej kolejności ładowana koparką na samochody i przewożona na wyznaczone składowiska lub częścią ładowana jest do urządzenia kruszącego-sortującego. Ponieważ urabianie warstw skalnych prowadzone jest w celu wyrównania podłoża pod budowaną drogę oraz formowania skarp, geometryczne rozmieszczenie otworów oraz wstępne wielkości przewidywanych do zastosowania ładunków, wyznaczane są na podstawie obliczeń i doświadczeń. Wielkość ładunków MW powinna zapewniać ograniczony wpływ na strukturę i wytrzymałość skał podłożem.

Materiałami wybuchowymi, które znajdują coraz szerzej zastosowanie są MW emulsyjne, lub MW typu ANFO inicjowane ładunkami udarowymi uzbrojonymi w zapalniki nieelektryczne.

Nowoczesne, nieelektryczne i elektroniczne systemy inicjacji zapalników pozwalają na jeszcze lepsze dobor cza- sów opóźnień i odpalanie ładunków MW przy strzelaniach wieloszeregowych, co wpływa korzystnie na racjonalizację i zwiększenie efektywności robót strzałowych przy jedno- czasnym ograniczeniu m.in. propagacji drgań paraesthesycz- nych (Grzeškowski, Patla 2012). Otwory rozmieszczone są w siatce kwadratowej lub trójkątnej w zależności od sytuacji hipośmetrycznej szeregowo. Poszczególne ładunki odpalone są z opóźnieniem milisekundowym Δt ≥ 8 ms, a do łączenia otworów strzałowych wykorzystuje się kontynty w czasie Δt = 9—109 ms. W ramach prowadzonych robót strzałowych odpalane są także serie otworów ekranujących, rozluźnian- jących bądź kontrurujących. Z obserwacji i pomiarów prowadzonych w trakcie odpalania MW z użyciem nieelektrycznych systemów odpalania wynika, że dopasowanie czasu opóźnie- nia milisekundowego do warunków prowadzenia strzelan daje szerokie możliwości kierowania procesem wybuchowego urabiania skał, zwiększając w ogólnym bilansie aktywną energię przeznaczoną na rozdrabnianie skały przy jednoczesnym zmniejszeniu efektu sejsmicznego (Onderka 2006).

Wiercenie otworów strzałowych stanowi pierwszy stopień weryfikacji założonych parametrów geologiczno-górniczych, a informacje uzyskane w trakcie wiercenia decydują o liczbie i sposobie rozmieszczenia ładunków MW w zabierze oraz połączenia ich w sieć strzałową.

Wszystkie etapy: pozyskiwania informacji, projektowania i wykonania robót strzałowych, prowadzone były według nowoczesnych standardów stosowanych zarówno w górnictwie odkrywkowym, jak i makronielakowych pracach budowlanych, z wykorzystaniem specjalistycznego sprzętu, oprogramowania oraz w oparciu o doświadczony i wykwalifi- kowany personel. Pozwoliło to na osiągnięcie założonych celów oraz uniknięcie szkód czy zagrożeń.

5. Monitoring efektów strzelania

Ze względu na konieczność prowadzenia strzelania w pobli- żu obiektów chronionych konieczne jest skuteczne ogranicza- nie zasięgu niebezpiecznych oddziaływań. Monitoring tych oddziaływań prowadzony jest za pomocą automatycznych zestawów czujająco-pomiaryowych typu Vibraloc oraz kamer cyfrowych rejestrujących proces detonacji ładunków MW i przemieszania urobku.

Pomiary drgań paraesthesycznych wykonywane w trakcie odstrzałów, wykorzystywane są następnie do weryfikacji za- leżności korelacyjnych propagacji i bezpiecznych wielkości ładunków MW. Dzięki wykorzystaniu programów i proce- dur obliczeniowych, ustalone zasięgi stref niebezpiecznych oddziaływań skorelowane z odległością do obiektów chro- nionych i wielkością odpalanych ładunków MW, nie zostają przekroczone.

6. Podsumowanie

Stosowanie rozwiązań i procedur sprawdzonych w odkrywkowych zakładach górniczych, przynosi wymierno efekty ekonomiczne przedsiębiorcom prowadzącym działal- ność budowlaną. Pozwala na ograniczenie zasięgów niebez- piecznych oddziaływań na otaczające środowisko oraz daje znaczne oszczędności, skracając czas realizacji zadań i zmniejsza zużycie maszyn urabiających. Dotychczasowe doświad- czenia zdobyte w ramach prac badawczych prowadzonych
w IGO „Poltegor-Insytut” potwierdzają potrzebę wdrażania nowoczesnych technologii przy rozwiązywaniu problemów związanych z możliwościami stosowania MW w bliskiej odległości od obiektów chronionych. Możliwość adaptacji rozwiązań technologicznych zaczernietych z odkrywkowych zakładów górniczych do prac makronielacynnych. Pozwalała na kompleksowe i systemowe wykorzystanie procedur analizy warunków i efektów urabiania. Umieściła stosowanie konkretnych parametrów i środków strażalowych przy ustalonych warunkach urabiania, połączonych z ochroną przyległych obiektów kubaturowych i liniowych. Zastosowania technologiczne, oprócz rozwiązań technicznych i poprawy efektów ekonomicznych, dają możliwość minimalizacji oddziaływania na środowisko naturalne. Należy stwierdzić, że dominujące znaczenie w projektowaniu i optymalizacji technologii makronielacynnych robót strażalowych ma kontrola zjawisk związanych z fizyką wybuchu ładunków MW, a w szczególności propagacji dżajów parasejsmicznych, rozrzucone odlamkami skalnymi oraz prawdziwa identyfikacja warunków geologiczno-inżynierskich.

Do podstawowych sposobów ograniczenia wielkości strefy zagrożeń należy prawidłowe dostosowanie wielkości ładunku MW do warunków podłoża skalnego oraz wykonanie przybitki z frakcji gwarantujących dobre klinowanie w otworze strażalowym.

Stosowanie nieelektrycznych i elektronicznych systemów odpalania oraz prawidłowy dobór czasów opóźnień milisekundowych, pozwala na bezpieczne zwiększenie wielkości ładunku odpalanego w serii oraz lepsze kierowanie procesem urabiania skał i formowania kształtu usypu, bez wzrostu emisji dżajów parasejsmicznych.

Literatura


Dz.U. 42 poz. 216 z dnia 18 lutego 2011 r. w sprawie sposobu prowadzenia prac z użyciem materiałów wychowowych przeznaczonych do użytku cywilnego oraz podczas oczyszczenia terenów.

Dz.U. Nr 117 poz. 1007 z dnia 21 czerwca 2002 r. o materiałach wychowowych przeznaczonych do użytku cywilnego (z późniejszymi zmianami).


Kawecki J., Stypula K. 2008 - Błędy w prognozowaniu i diagnostyce wpływow dynamicznych na budynki. Czasopismo Techniczne z 1-M.


ONDERKAZ. 2006 - Propagacja fal parasejsmicznych przy strzelaniu długimi otworami w kopalinach odkrywkowych. „Górniczo Odkrywkowe” 3-4.

PN-85/B-02170 „Ocena szkodliwości dżajów przekazywanych przez podłoże na budynki".


Artykuł wpłynął do redakcji – grudzień 2016

Artykuł akceptowano do druku 15.02.2017

---

Zwiększajmy prenumeratę

najstarszego – czołowego miesięcznika

Stowarzyszenia Inżynierów i Techników Górnictwa!

Liczba zamawianych egzemplarzy określa zaangażowanie jednostki gospodarczej w procesie podnoszenia kwalifikacji swoich kadr!

Zapraszamy do publikacji artykułów w wersji angielskojęzycznej