Nowa wersja platformy jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 42, No. 4 | 420--430
Tytuł artykułu

Temporal pattern prevails over spatial variability in phytoplankton communities from a subtropical water supply reservoir

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Phytoplankton species are dominant components in reservoir ecosystems, yet little is known about their variability and dynamics, especially along the depth continuum. This study examined vertical and horizontal differences in phytoplankton communities in a typical subtropical deep reservoir (i.e. Dongzhen Reservoir) from 2011 to 2012. Phytoplankton communities separated into four groups based on the biomass data, indicating that temporal differences in the community structure were greater than spatial differences. Autumn communities had the highest diversity measured by the Shannon-Wiener index (2.47±0.07), while summer communities had the lowest diversity (0.46±0.09). Both winter and spring communities were dominated by diatoms (90.4±1.7%), while cyanobacteria dominated in summer communities during our sampling period. In spring and summer, however, the three surface communities characterized by high biomass were most similar to each other, indicating that vertical variation was significantly higher than horizontal differences. Furthermore, Cylindrospermopsis raciborskii accounted for over 96% of the total phytoplankton biomass in the summer surface water. The redundancy analysis (RDA) illustrated that the temporal factor (summer), the spatial factor (depth), and nutrients (nitrite and nitrate nitrogen, ammonium nitrogen, phosphate phosphorus) were significant variables affecting the dynamics of phytoplankton communities. High temperature with stable thermal stratification might have been the cause of C. raciborskii dominance in Dongzhen Reservoir in summer. Regular and long-term monitoring of dominant species is urgently needed for water quality protection and sustainable reservoir management.
Wydawca

Rocznik
Strony
420--430
Opis fizyczny
Bibliogr. 37 poz., tab., wykr.
Twórcy
autor
  • Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
  • University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
autor
  • Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P. R. China, jyang@iue.ac.cn
autor
  • Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
Bibliografia
  • 1. Berger, C., Ba, N., Gugger, M., Bouvy, M., Rusconi, F., Couté, A., Troussellier, M. and Bernard, C. (2006). Temporal dynamics and toxicity of Cylindrospermopsis raciborskii in Lake Guiers (Senegal, West Africa). FEMS Microbiology Ecology 57, 355–366. DOI: 10.1111/j.1574-6941.2006.00141.x.
  • 2. Bouvy, M., Falcao, D., Marinho, M., Pagano, M. and Moura, A. (2000). Occurrence of Cylindrospermopsis raciborskii (Cyanobacteria) in 39 Brazilian tropical reservoirs during the 1998 drought. Aquatic Microbial Ecology 23, 13–27. DOI: 10.3354/ame023013.
  • 3. Branco, C.W.C. and Senna, P.A.C. (1994). Factors influencing the development of Cylindrospermopsis raciborskii and Microcystis aeruginosa in the Paranoa Reservoir, Brasilia, Brazil. Algological Studies 75, 85–96.
  • 4. Briand, J.F., Robillot, C., Quiblier-Lloberas, C., Humbert, J.F. and Coute, A. (2002). Environmental context of Cylindrospermopsis raciborskii (cyanobacteria) blooms in a shallow pond in France. Water Research 36, 3183–3192. DOI: 10.1016/S0043-1354(02)00016-7.
  • 5. Carpenter, S.R. (2008). Phosphorus control is critical to mitigating eutrophication. Proceedings of the National Academy of Sciences 105, 11039–11040. DOI: 10.1073/pnas.0806112105.
  • 6. Clarke, K.R. and Gorley, R.N. (2001). PRIMER v5: User Manual/Tutorial. PRIMER-E, Plymouth, UK.
  • 7. Eker, E. and Kideys, A.E. (2003). Distribution of phytoplankton in the southern Black Sea in summer 1996, spring and autumn 1998. Journal of Marine Systems 39, 203–211. DOI: 10.1016/S0924-7963(03)00031-9.
  • 8. Figueredo, C.C. and Giani, A. (2001). Temporal variation in the diversity and species richness of phytoplankton in a tropical eutrophic reservoir. Hydrobiologia 445, 165–174. DOI: 10.1093/plankt/24.7.617.
  • 9. Han, B.P. and Liu, Z.W. (2012). Tropical and Subtropical Reservoir Limnology in China: Theory and Practice. Springer, New York, USA. DOI: 10.1007/978-94-007-2007-7.
  • 10. Hawkins, P.R., Runnegar, M.T.C., Jackson, A.R.B. and Falconer, I.R. (1985). Severe hepatotoxicity caused by the tropical cyanobacterium Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju isolated from a domestic water supply reservoir. Applied and Environmental Microbiology 50, 1292–1295.
  • 11. Hillebrand, H., Durselen, C.D., Kirschtei, D.B., Pollingher, U. and Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35, 403–424. DOI: 10.1046/j.1529-8817.1999.3520403.x
  • 12. Hu, H.J. and Wei, Y.X. (2006). The Freshwater Algae of China (in Chinese). Science Press, Beijing, China.
  • 13. Karadžić, V., Simić, G.S., Natić, D., Ržaničanin, A., Ćirić, M. and Gačić, Z. (2013). Changes in the phytoplankton community and dominance of Cylindrospermopsis raciborskii (Wolosz.) Subba Raju in a temperate lowland river (Ponjavica, Serbia). Hydrobiologia 711, 43–60. DOI: 10.1007/s10750-013-1460-6.
  • 14. Katsiapi, M., Moustaka-Gouni, M., Michaloudi, E. and Ar. Kormas, K. (2011). Phytoplankton and water quality in a Mediterranean drinking-water reservoir (Marathonas Reservoir, Greece). Environmental Monitoring and Assessment 181, 563–575. DOI: 10.1007/s10661-010-1851-3.
  • 15. Kling, J.H. (2009). Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria): a brief historic overview and recent discovery in the Assiniboine River (Canada). Fottea 9, 45–47.
  • 16. Marshall, H.G., Lane, M.F., Nesius, K.K. and Burchardt, L. (2009). Assessment and significance of phytoplankton species composition within Chesapeake Bay and Virginia tributaries through a long-term monitoring program. Environmental Monitoring and Assessment 150, 143–155. DOI: 10.1007/s10661-008-0680-0.
  • 17. McCormick, P.V. and Cairns, J.Jr. (1994). Algae as indicators of environmental change. Journal of Applied Phycology 6, 509–526. DOI: 10.1007/BF02182405.
  • 18. McGregor, G.B. and Fabbro, L.D. (2000). Dominance of Cylindrospermopsis raciborskii (Nostocales, Cyanoprokaryota) in Queensland tropical and subtropical reservoirs: implications for monitoring and management. Lakes and Reservoirs: Research and Management 5, 195–205. DOI: 10.1046/j.1440-1770.2000.00115.x.
  • 19. Mohamed, A.Z. (2007). First report of toxic Cylindrospermopsis raciborskii and Raphidiopsis mediterranea (Cyanoprokaryota) in Egyptian freshwaters. FEMS Microbiology Ecology 59, 749–761. DOI: 10.1111/j.1574-6941.2006.00226.x.
  • 20. Moisander, P.H., Cheshire, L.A., Braddy, J., Calandrino, E.S., Hoffman, M., Piehler, M.F. and Paerl, H.W. (2012). Facultative diazotrophy increases Cylindrospermopsis raciborskii competitiveness under fluctuating nitrogen availability. Microbiology Ecology 79, 800–811. DOI: 10.1111/j.1574-6941.2011.01264.x.
  • 21. O’Neil, J.M., Davis, T.W., Burford, M.A. and Gobler, C.J. (2012). The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 14, 313–334. DOI:10.1016/j.hal.2011.10.027.
  • 22. Paul, V.J. (2008). Global warming and cyanobacterial harmful algal booms. In: Hudnell, H,K., ed. Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs. Advances in Experimental Medicine and Biology 619, 239–257. DOI: 10.1007/978-0-387-75865-7_11.
  • 23. Présing, M., Herodek, S., Vörös, L. and Kóbor, I. (1996). Nitrogen fixation, ammonium and nitrate uptake during a bloom of Cylindrospermopsis raciborskii in Lake Balaton. Archiv für Hydrobiologie 136, 553–562.
  • 24. Rakocevic-Nedovic, J. and Hollert, H. (2005). Phytoplankton community and chlorophyll a as trophic state indices of Lake Skadar (Montenegro, Balkan). Environmental Science and Pollution Research 12, 146–152. DOI:10.1065/espr2005.04.241.
  • 25. Saker, M.L. and Griffiths, D.J. (2000). The effect of temperature on growth and cylindrospermopsin content of seven isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from water bodies in northern Australia. Phycologia 39, 349–354. DOI: 10.2216/i0031-8884-39-4-349.1.
  • 26. Senogles, P., Shaw, G., Smith, M., Norris, R., Chiswell, R., Mueller, J., Sadler, R. and Eaglesham, G. (2000). Degradation of the cyanobacterial toxin cylindrospermopsin, from Cylindrospermopsis raciborskii, by chlorination. Toxicon 38, 1203–1213. DOI:10.1016/S0041-0101(99)00210-X.
  • 27. Shen, Y.F., Zhang, Z.S., Gong, X.J., Gu, M.R., Shi, Z.X. and Wei, Y.X. (1990). Modern Biomonitoring Techniques Using Freshwater Microbiota (in Chinese). China Architecture & Building Press, Beijing.
  • 28. Sommer, U., Gliwicz, Z.M., Lampert, W. and Duncan, A. (1986). The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106, 433–471.
  • 29. Sommer, U., Adrian, R., Domis, L.D.S., Elser, J.J., Gaedke, U., Ibelings, B., Jeppesen, E., Lürling, M., Molinero, J.C., Mooij, W.M., van Donk, E. and Winder, M. (2012). Beyond the plankton ecology group (PEG) model: mechanisms driving plankton succession. Annual Review of Ecology, Evolution, and Systematics 43, 429–448. DOI: 10.1146/annurev-ecolsys-110411-160251.
  • 30. Stabili, L., Caroppo, C. and Cavallo, R.A. (2006). Monitoring of a coastal Mediterranean area: culturable bacteria, phytoplankton, environmental factors and their relationships in the southern Adriatic Sea. Environmental Monitoring and Assessment 121,303–325. DOI: 10.1007/s10661-005-9124-2.
  • 31. Tian, C., Pei, H.Y., Hu, W.R. and Xie, J. (2013). Phytoplankton variation and its relationship with the environmental factors in Nansi Lake, China. Environmental Monitoring and Assessment 185,295–310. DOI: 10.1007/s10661-012-2554-8.
  • 32. Whitton, B.A. and Potts, M. (2000). The Ecology of Cyanobacteria: Their Diversity in Time and Space. Kluwer Academic Publishers, Dordrecht. DOI: 10.1007/978-94-007-3855-3.
  • 33. Yang, J., Yu, X.Q., Liu, L.M., Zhang, W.J. and Guo, P.Y. (2012). Algae community and trophic state of subtropical reservoirs in southeast Fujian, China. Environmental Science and Pollution Research 19, 1432–1442. DOI: 10.1007/s11356-011-0683-1.
  • 34. Yang, M., Bi, Y.H., Hu, J.L., Zhu, K.X., Zhou, G.J. and Hu, Z.Y. (2011). Season variation in functional phytoplankton groups in Xiangxi Bay, Three Gorges Reservoir. Chinese Journal of Oceanology and Limnology 29, 1057–1064. DOI: 10.1007/s00343-011-0255-8.
  • 35. Yu, Z., Yang, J., Zhou, J., Yu, X.Q., Liu, L.M. and Lv, H. 2014. Water stratification affects the microeukaryotic community in a subtropical deep reservoir. Journal of Eukaryotic Microbiology 61, in press. DOI: 10.1111/jeu.12090.
  • 36. Zhang, Z.S. and Huang, X.F. (1991). Method for Study on Freshwater Plankton (in Chinese). Science Press, Beijing, China.
  • 37. Zheng, H.P. (2012). Phytoplankton community characteristic and eutrophication status analysis of Dongzhen Reservoir (China). Chemical Engineering & Equipment 5, 193–200. (in Chinese). DOI: 10.3969/j.issn.1003-0735.2012.05.062.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-de15a964-e02b-48fa-8b8c-ef0e2860a016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.