Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | Vol. 8, No. 2 | 39--44
Tytuł artykułu

Tracing the genetic origin of brown trout (Salmo trutta) re-colonizing the Ecker reservoir in the Hartz National Park, Germany

Treść / Zawartość
Warianty tytułu
Języki publikacji
The Ecker reservoir and its main tributary had been free of brown trout (Salmo trutta) for several decades due to cumulative effects of natural and anthropogenic acidification. However, after the decline of emissions in the 1990s and the resulting rise of water pH to suitable for brown trout values, the species began to recolonize its original habitats. In the main tributary first brown trout individuals were caught in 2008 and in the reservoir in later years as well. Stocking could be excluded in both areas. Therefore, the present study was aimed to trace the genetic origin of these brown trout by genotyping eight microsatellite loci in samples collected in the reservoir, its main tributary, potential refugia and - for comparison - from two areas downstream of the dam being physically isolated for about 70 years. Genetic variability within populations (average number of alleles per locus), genetic differentiation between populations (FST values and genetic distances), occurrence of certain alleles and results of assignment tests indicated that the Ecker reservoir was re-colonized from two sources: the Große Peseke, a small direct inflow into the reservoir, and the Fuhler Lohnsbach, a parallel flowing brook connected to the reservoir by a pipe. Genetic data also supported recolonization of the main tributary from the reservoir but not in the opposite direction. Moreover, bottleneck effects were evident in brown trout populations upstream of the dam compared to the two populations downstream of the dam.

Opis fizyczny
Bibliogr. 19 poz., rys., tab.
  • Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Ecophysiology and Aquaculture, Müggelseedamm 310, 12587 Berlin, Germany, Phone: 0049-30-64 181 634; Fax: 0049-30-64 181 663,
  • Harz National Park, Lindenallee 35, 38855 Wernigerode, Germany
  • Cairney, M., J.B. Taggart, B. Hoyheim. 2000. Characterization of microsatellite and minisatellite loci in Atlantic salmon (Salmo salar L.) and cross-species amplification in other salmonids. Molecular Ecology 9: 2175-2178.
  • Cornuet, J.M., S. Piry, G. Luikart, A. Estoup, M. Solignac. 1999. New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153: 1989-2000.
  • DeHaan, P.W., W.R. Ardren. 2005. Characterization of 20 highly variable tetranucleotide microsatellite loci for bull trout (Salvelinus confluentus) and cross-amplification in other Salvelinus species. Molecular Ecology Notes 5: 582-585.
  • Dieringer, D., C. Schlötterer. 2003. MICROSATELLITE ANALYSER (MSA): a platform independent analysis tool for large microsatellite data sets. Molecular Ecology Notes 3: 167-169.
  • Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle. Available at
  • King, T.L., M.S. Eackles, B.H. Letcher. 2005. Microsatellite DNA markers for the study of Atlantic salmon (Salmo salar) kinship, population structure, and mixed-fishery analyses. Molecular Ecology Notes 5: 130-132.
  • Kumar, S., K. Tamura, M. Nei. 2004. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics 5: 150-163.
  • Nei, M., F. Tajima, Y. Tateno. 1983. Accuracy of estimated phylogenetic trees from molecular data. Journal of Molecular Evolution 19: 153-170.
  • O’Reilly, P.T., L.C. Hamilton, S.K. McConnell, J.M. Wright. 1996. Rapid analysis of genetic variation in salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Canadian Journal of Fisheries and Aquatic Sciences 53: 2292-2298.
  • Palti, Y., M.R. Fincham, C.E. Rexroad III. 2002. Characterization of 38 polymorphic microsatellite markers for rainbow trout (Oncorhynchus mykiss). Molecular Ecology Notes 2: 449-452.
  • Presa, P., R. Guyomard. 1996. Conservation of microsatellites in three species of salmonids. Journal of Fish Biology 49: 1326-1329.
  • Raymond, M., F. Rousset. 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity 86: 248-249.
  • Rice, W.R. 1989. Analyzing tables of statistical tests. Evolution 43: 223-225.
  • Slettan, A., I. Olsaker, O. Lie. 1995. Atlantic salmon, Salmo salar, microsatellites at the SSOSL25, SSOSL85, SSOSL311, SSOSL417 loci. Animal Genetics 26: 281-282.
  • van Oosterhout, C., W.F. Hutchinson, D.P.M. Wills, P. Shipley. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535-538.
  • Weir, B.S., C.C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358-1370.
  • Wüstemann, O. 1989. Die Fischfauna des Harzes - ökologisch betrachtet. Harz 21: 12-16 (in German).
  • Wüstemann, O. 2009. Die Rückkehr der Bachforelle in den Hochharz. Nationalpark (Wildnis, Mensch, Landschaft) 143: 46-47 (in German).
  • Wüstemann, O., B. Kammerad. 1991. Die Fischfauna der Fließgewässer des Kreises Wernigerode (Bezirk Magdeburg/Sachsen-Anhalt). Fischökologie aktuell 5: 14-18 (in German).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.