Nowa wersja platformy jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 35, no. 1 | 54--63
Tytuł artykułu

Investigation of microstructure of bone tissue in mandibles of newborn rats after maternal treatment with antiretroviral drugs

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High-resolution imaging has become a powerful tool for measurements in clinics, laboratory and animal studies, etc. In the present study, we aimed to investigate age related changes in bone development, and the effect of two antiretroviral agents (zidovudine and indinavir), which were administered during pregnancy, on the microstructure and bone mineral density (BMD) in newborn rats (7-, 14- and 28-day-old), with the use of X-ray microcomputed tomography (XMT). Fifty-four mandible bones were collected and divided into 3 groups: group 1 and 2: newborns after maternal treatment of zidovudine and indinavir respectively, group 3: control animals. The specimens were XMT scanned with the resolution of 7 μm and with a density phantom. Histomorphometric parameters and BMD were calculated to assess bone development depending on the administered drug. A statistical analysis was carried out to compare the differences among the control, zidovudine and indinavir groups. The analysis of the microstructure revealed disturbances in the development of the bone tissue in newborn rats. Indinavir seems to have a greater impact on bone microstructure than zidovudine.
Wydawca

Rocznik
Strony
54--63
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
  • X-ray Microtomography Lab, Department of Biomedical Computer Systems, Institute of Computer Science, Faculty of Computer and Materials Science, University of Silesia, 75 Pułku Piechoty 1, Building H, Segment C, P.7, 41-500 Chorzów, Poland
  • X-ray Microtomography Lab, Department of Biomedical Computer Systems, Institute of Computer Science, Faculty of Computer and Materials Science, University of Silesia, 75 Pułku Piechoty 1, Building H, Segment C, P.7, 41-500 Chorzów, Poland, marcin.binkowski@us.edu.pl
  • Chełkowski's Institute of Physics, Department of Medical Physics, University of Silesia, Katowice, Poland
autor
  • Chełkowski's Institute of Physics, Department of Medical Physics, University of Silesia, Katowice, Poland
autor
  • X-ray Microtomography Lab, Department of Biomedical Computer Systems, Institute of Computer Science, Faculty of Computer and Materials Science, University of Silesia, 75 Pułku Piechoty 1, Building H, Segment C, P.7, 41-500 Chorzów, Poland
Bibliografia
  • [1] Stock SR. Microcomputed tomography: methodology and applications. Boca Raton: CRC Press, Inc.; 2009.
  • [2] Holdsworth DW, Thornton MM. Micro-CT in small animal and specimen imaging. Trends Biotechnol 2002;20:S34–9.
  • [3] Cowin SC, editor. Bone mechanics handbook. 2nd ed. Boca Raton: CRC Press; 2001.
  • [4] Nakano H, Maki K, Shibasaki Y, Miller AJ. Three-dimensional changes in the condyle during development of an asymmetrical mandible in a rat: a microcomputed tomography study. Am J Orthod Dentofac Orthop 2004;126:410–20.
  • [5] Harris JS, Bemenderfer TB, Wessel AR, Kacena MA. A review of mouse critical size defect models in weight bearing bones. Bone 2013;55:241–7.
  • [6] microCT world. http://www.microctworld.net [accessed 27.11.13].
  • [7] Morphometric parameters measured by Skyscan CT-analysed software. http://www.skyscan.be/next/ctan03.pdf [accessed 27.11.13].
  • [8] Li Q, Zhang M, Chen Y-J, Zhou Q, Wang Y, Liu J. Psychological stress alters microstructure of the mandibular condyle in rats. Physiol Behav 2013;110–111:129–39.
  • [9] Honda K, Watari I, Takei M, Ono T. Changes in the microstructure of the rat alveolar bone induced by unilateral molar extraction and estrogen deficiency. Orthod Waves 2011;70:143–50.
  • [10] Jiao K, Dai J, Wang M-Q, Niu L-N, Yu S-B, Liu X-D. Age- and sex-related changes of mandibular condylar cartilage and subchondral bone: a histomorphometric and micro-CT study in rats. Arch Oral Biol 2010;55:155–63.
  • [11] Jiao K, Niu L-N, Wang M-Q, Dai J, Yu S-B, Liu X-D, et al. Subchondral bone loss following orthodontically induced cartilage degradation in the mandibular condyles of rats. Bone 2011;48:362–71.
  • [12] Mavropoulos A, Kiliaridis S, Bresin A, Ammann P. Effect of different masticatory functional and mechanical demands on the structural adaptation of the mandibular alveolar bone in young growing rats. Bone 2004;35:191–7.
  • [13] Stone B, Dockrell D, Bowman C, McCloskey E. HIV and bone disease. Arch Biochem Biophys 2010;503:66–77.
  • [14] McComsey GA, Tebas P, Shane E, Yin MT, Overton ET, Huang JS, et al. Bone disease in HIV infection: a practical review and recommendations for HIV care providers. Clin Infect Dis 2010;51:937–46.
  • [15] Rodman JH. Design of antiretroviral clinical trials for HIV-1 infected pregnant women and their newborn infants. Semin Perinatol 2001;25:170–6.
  • [16] Sperling R, Shapiro D, McSherry G. Safety of the maternal-infant zidovudine regimen utilized in the Pediatric AIDS Clinical Trial Group 076 Study. AIDS 1998;12 (14):1805–13.
  • [17] Olivero OA, Anderson LM, Diwan BA, Haines DC, Harbaugh SW, Moskal TJ, et al. Transplacental effects of 30-azido-20,30- dideoxythymidine (AZT): tumorigenicity in mice and genotoxicity in mice and monkeys. J Natl Cancer Inst 1997;89:1602–8.
  • [18] Tarantal A, Castillo A, Ekert J, Bischofberger N, Martin R. Foetal and maternal outcome after administration of tenofovir to gravid rhesus monkeys (Macaca mulatta). J Acquir Immune Defic Syndr 2002;29:207–20.
  • [19] Tarantal A, Marthas M, Shaw J, Cundy K, Bischofberger N. Administration of 9-[2-(phosphonomethoxy)propyl] adenine (PMPA) for prevention of perinatal simian immunodeficiency virus infection in rhesus macaques. J Acquir Immune Defic Syndr Hum Retrovirol 1999;20:323–33.
  • [20] Mora S, Giacomet V, Viganò A, Cafarelli L, Stucchi S, Pivetti V, et al. Exposure to antiretroviral agents during pregnancy does not alter bone status in infants. Bone 2012;50:255–8.
  • [21] Drzazga ZK, Michalik K, Maciejewska K, Kaszuba M, Nowińska B, Trzeciak H. Optical and X-ray fluorescence spectroscopy studies of bone and teeth in newborn rats after maternal treatment with indinavir. Photochem Photobiol 2010;86:87–95.
  • [22] Drzazga ZK, Kluczewska-Gałka A, Michnik A, Kaszuba M, Trzeciak H. Fluorescence spectroscopy as tool for bone development monitoring in newborn rats. J Fluoresc 2011;21:851–7.
  • [23] Drzazga ZK, Maciejewska K, Michalik K, Kaszuba M, Nowińska B. Does maternal treatment with zidovudine affect changes in mandibles of newborns? Laser induced fluorescence study. J Fluoresc 2011;21:883–6.
  • [24] Wagnières GA, Star WM, Wilson BC. In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol 1998;68:603–32.
  • [25] Richards-Kortum R, Sevick-Muraca E. Quantitative optical spectrocopy for tissue diagnosis. Annu Rev Phys Chem 1996;47:555–606.
  • [26] Michalik K, Drzazga ZK, Maciejewska K, Trzeciak H, Kaszuba M. Monitoring of postnatal bone mineralization in the newborn rats with the use of X-ray fluorescence analysis. Polish J Environ Stud 2010;1:160–5.
  • [27] Maciejewska K, Drzazga ZK, Kaszuba M. Role of trace elements (Zn, Sr, Fe) in bone development: energy dispersive X-ray fluorescence study of rat bone and tooth tissue. Biofactors 2014. http://dx.doi.org/10.1002/biof.1163 [Epub ahead of print].
  • [28] Binkowski M, Davis GR, Wrobel Z, Goodship AE. Quantitative measurement of the bone density by X-ray micro computed tomography. 6th World Congr Biomech. 2010. pp. 856–9.
  • [29] Binkowski M, Kokot G, Bolechala F, John A. Image-based finite element modeling of three-point bending test of cortical bone. Proc SPIE 8506, Dev X-Ray Tomogr VIII, 85060D; 2012.
  • [30] Cyganik Ł, Binkowski M, Kokot G, Rusin T, Popik P, Bolechała F, et al. Prediction of Young's modulus of trabeculae in microscale using macro-scale's relationships between bone density and mechanical properties. J Mech Behav Biomed Mater 2014;36 (August):120–36.
  • [31] Parkinson IH, Badiei A, Fazzalari NL. Variation in segmentation of bone from micro-CT imaging: implications for quantitative morphometric analysis. Australas Phys Eng Sci Med 2008;31:160–4.
  • [32] Truong QB, Lee BR. Automatic multi-thresholds selection for image segmentation based on evolutionary approach. Int J Control Autom Syst 2013;11:834–44.
  • [33] Wang H, Dong Y. An improved image segmentation algorithm based on Otsu method. Proc. SPIE 6625, International Symposium on Photoelectronic Detection and Imaging 2007: Related Technologies and Applications, 6625I; 2008.
  • [34] Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Min Res 1987;2:595–610.
  • [35] Limaye A. Drishti: volume exploration and presentation tool. http://anusf.anu.edu.au/Vizlab/drishti/ [accessed 01.08.13].
  • [36] Zuccotti G, Viganò A, Gabiano C, Giacomet V, Mignone F, Stucchi S, et al. Antiretroviral therapy and bone mineral measurements in HIV-infected youths. Bone 2010;46: 1633–8.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-d6676654-599a-4066-aa28-4432c34d2531
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.