Editorial Board

International Scientific Committee
Anna BŁACH, Ted BRANOFF (USA), Modris DOBELIS (Latvia), Bogusław JANUSZEWSKI, Natalia KAYGORODTSEVA (Russia), Corneli LEOPOLD (Germany), Vsevolod Y. MIKHAILENKO (Ukraine), Jarosław MIRSKI, Vidmantas NENORTA (Lithuania), Pavel PECH (Czech Republic), Stefan PRZEWŁOCKI, Leonid SHABEKA (Belarus), Daniela VELICHOVÁ (Slovakia), Krzysztof WITCZYŃSKI

Editor-in-Chief
Edwin KOŹNIEWSKI

Associate Editors
Renata GÓRSKA, Maciej PIEKARSKI, Krzysztof T. TYTKOWSKI

Secretary
Monika SROKA-BIZOŃ

Executive Editors
Danuta BOMBIK (vol. 1-18), Krzysztof T. TYTKOWSKI (vol. 19-31)

English Language Editor
Barbara SKARKA

Marian PALEJ – PTGiGI founder, initiator and the Editor-in-Chief of BIULETYN between 1996-2001

All the papers in this journal have been reviewed

Editorial office address:
44-100 Gliwice, ul. Krzywoustego 7, POLAND
phone: (+48 32) 237 26 58

Bank account of PTGiGI: Lukas Bank 94 1940 1076 3058 1799 0000 0000

ISSN 1644 - 9363

Publication date: December 2018 Circulation: 100 issues.
Retail price: 15 PLN (4 EU)
PART I: THEORY (TEORIA)
1 A. Borowska: APPROXIMATION OF THE SPHEROID OFFSET SURFACE AND THE TORUS OFFSET SURFACE 3

PART II: GRAPHICS EDUCATION (DYDAKTYKA)
1 K. Banaszak: CONIC SECTIONS IN AXONOMETRIC PROJECTION 11
2 B. Kotarska-Lewandowska: BETWEEN DESCRIPTIVE GEOMETRY AND CAD 3D 15
3 C. Łapińska, A. Ogorzałek: CHARACTERISTIC POINTS OF CONICS IN THE NET-LIKE METHOD OF CONSTRUCTION 21
4 O. Nikitenko, I. Kernytskyy, A. Kalinin, V. Dumanskaja: DESCRIPTIVE GEOMETRY COURSE ADDRESSED TO THE CIVIL ENGINEERING STUDENTS AT ODESSA STATE ACADEMY 29
5 F. N. Pritykin, N. V. Kaygorodtseva, M. N. Odinet, I.V. Krysova: ROBOTICS AS MOTIVATION OF LEARNING TO GEOMETRY AND GRAPHICS 35

PART III: APPLICATIONS (ZASTOSOWANIA)
1 A. Borowska: APPROXIMATION OF THE ELLIPSE OFFSET CURVES IN TURBO ROUNDABOUTS DESIGN 43
2 A. Borowska: APPROXIMATION OF THE OFFSET CURVES IN THE FORMATION OF TURBO ROUNDABOUTS 53
3 O. Nikitenko, I. Kernytskyy: GEOMETRIC MODELLING OF CONJUGATE RULED SURFACES WITH USING THE KINEMATIC SCREW DIAGRAM 61
4 K. Panchuk, E. Lyubchinov: SPATIAL CYCLOGRAPHIC MODELING ON NAUMOVICH HYPERDRAWING 69

PART IV: HISTORY OF DESCRIPTIVE GEOMETRY (HISTORIA GEOMETRII WYKREŚLNEJ)
1 E. Koźniewski: WYBRANE KONSTRUKCJE GEOMETRYCZNE W SŁOWNIku WYRAZÓW TECHNICZNYCH TYCZĄCYCH SIĘ BUDOWNICTWA TEOFILA ŻEBRAWSKIEGO 79

PART V: INFORMATION AND NEWS (WYDARZENIA I INFORMACJE)
1 REVIEWERS 2018 14
GEOMETRIC MODELLING OF CONJUGATE RULED SURFACES WITH USING THE KINEMATIC SCREW DIAGRAM

Oksana NIKITENKO, Ivan KERNYTSKY

Warsaw University of Life Sciences – SGGW
Department of Construction and Environmental Engineering,
ul. Nowoursynowska 166, Warszawa, POLAND
oksana_nikitenko@sggw.pl, ivan_kernytskyy@sggw.pl

Abstract. In gears with skew axes the theoretical initial or auxiliary surfaces are one-sheeted hyperboloids. Their individual parts that adjoin straight lines can be used to design various gears. One of the methods of geometric modeling of the conjugate initial surfaces of spatial gears is the method of applying of the kinematic screw diagram (KSD) proposed by A.F. Nikolaev in 1950. A number of problems based on Nikolaev's theory are presented and geometric models of conjugate ruled surfaces are developed with the using of KSD in this article. The surfaces of a one-sheeted hyperboloid and a convolute (or undevelopable) helicoid were taken for the analytical research. The conducted research proves graphically the proposed Nikolaev's theory and allows to design new gears train with spatial gearing.

Keywords: kinematic screw diagram, conjugate initial surfaces, one-sheeted hyperboloid, convolute helicoid

1 Introduction

Geometric modeling of conjugate ruled surfaces is an actual and perspective direction in applied geometry. Its main task is to create geometric, mathematical and computer models that can become a theoretical basis for the development of new types of gearing, tools, machines and processes.

2 History

The theory of plane gearing was developed by Euler in 1776. The founder of the theory of spatial gearing is the professor of descriptive geometry Theodore Olivier, who considered the formation of conjugate surfaces as the process of bending spatial forms and introduced the notion of an auxiliary (instrumental) surface. T. Olivier conducted analytical research using the methods of descriptive geometry and graphically performed all the constructions. Olivier accepted the fact that the theory of gearing is only the subject of the research of performance the geometry. Applied embodiment of the ideas of T. Olivier was carried out in 1886 by the Russian scientist mathematician and mechanic H.I. Gohman [1]. Using analytical methods, he transformed the theory of gearing into the field of analytical and differential geometry, eliminating the limitations imposed by applied geometry. One of the methods of geometric modeling of conjugated surfaces of spatial gearing is the using of the kinematic screw diagram (KSD), which was proposed by the mechanics Altman and Cormac in 1937, when they were researching spatial motion. Their work was continued and developed by Professor A.F. Nikolaev in 1950. He significantly expanded the circle of tasks associated with the motion around the crossing axes and what is he suggested using this diagram to construct conjugate ruled surfaces with a line tangency [2]. However being a mechanic he confined himself only to theoretical assumptions and did not develop this theory further.
3 Formulation of problem
At the present seems relevant and expedient the task to test Nikolaev's theory and to develop geometric models of conjugate ruled surfaces using KSD. An important conclusion in solving such problems is that only the conjugate surfaces constructed with the help of computer technologies can accurately show the zones of their touch or intersection. For our researching we take the surfaces of a one-sheeted hyperboloid and a convolute (or undevelopable) helicoid.

4 Methodology
The essence of the method developed by the authors is that by constructing the KSD with the given initial parameters of the spatial pair (the distance and the angle between the axes of the conjugate surfaces) and protraction one of the given parameters of the initial surface (the radius of the neck or the slope angle of the generator to the axis), one can determine the geometric parameters for another projected conjugate surface.

We consider the simplest and "classical" example – the conjugation of two hyperboloids. Let the distance $\Delta = O_1O_2$ between the axes i and j, crossing angle φ and the parameter of one of the conjugate surfaces – radius of neck a (Fig. 1). We construct the triangle AOB with base $AB = \Delta$ and angle $\angle AOB = \varphi$. We describe a circle around the triangle. Protracting the distance $AC = a$, dropping the perpendicular CK on a circle and connecting the point K with the vertex O, we obtain the diagram itself and the required parameters – the radius of the neck of the conjugate surface $b = \Delta - a$ and the slope angles of the generators of both surfaces to their axes $\alpha = \angle AOK$ and $\beta = \angle BOK$ (Fig. 2).

![Figure 1: Position of the axes in the space of the conjugate surfaces](image1.png)

![Figure 2: The kinematic screw diagram (KSD) for conjugate hyperboloids](image2.png)

We take $\Delta = 94$ mm, $\varphi = 71^\circ$ and $a = 38$ mm. After constructing KSD, we determine the missing parameters: $b = 56$ mm, $\alpha = 30^\circ$ and $\beta = 41^\circ$ (these parameters completely correspond to the diagram in Fig. 2). The obtained conjugate hyperboloids are shown in Fig. 3. We also add that the line of tangency of two surfaces in the process of their rotation makes a screw motion - in the diagram (see Fig. 2) the segment CK represents the pitch of the
helical surface. This screw motion occurs around the given axes, so we get two more conjugate convolute helicoids (Fig. 4). These helicoids will be conjugated to each other and associated with the corresponding hyperboloids (Fig. 5). Figures 3, 4, 5 show that four surfaces can participate in conjugation – two real and two imaginary surfaces, since they arise only during the rotation of two real surfaces.

Figure 3: Spatial model of two conjugate hyperboloids of revolution

Figure 4: Spatial model of two imaginary conjugate convolute helicoids

Figure 5: Spatial model of pairwise conjugate real and imaginary surfaces
Let’s analyze the following diagram presented in Fig. 6. We form the conjugated pair of a hyperboloid and a helicoid. If we set the distance between the surfaces $\Delta = 70$ mm, angle of crossing $\varphi = 39^\circ$, pitch of helical surface $h = BK = 36$ mm, and the radius of the helix $BC = 42$ mm, then by the diagram we define the missing parameters: the radius of the neck of the hyperboloid $AC = 28$ mm and the slope angles of the generators to the corresponding axes $\alpha = 19^\circ$ and $\beta = 20^\circ$. The spatial images of the constructed real surfaces are shown in Fig. 7. Just as in the previous problem two imaginary conjugate convolute helicoid again appear in the mutual motion with pitch $h_1 = BK_1$ (Figs. 8, 9).

Figure 6: Diagram for conjugate hyperboloid and helicoids

Figure 7: Spatial model of two conjugate real surfaces

Figure 8: Spatial model of conjugate imaginary helicoids
In the next task we set the condition for determining conjugation parameters for two convolute helicoids. Let $\Delta = 120$ mm, $\varphi = 50^\circ$, pitch of the first helical surfaces $h_1 = AK_1 = 60$ mm, pitch of the second helical surface $h_2 = BK_2 = 36$ mm, helix radius of the first helicoid $AC = 50$ mm (Fig. 10).

We determine the missing parameters from the diagram: the helix radius of the second helicoid $BC = 70$ mm, the slope angles of the generators to the corresponding axes $\alpha = 19^\circ$ and $\beta = 31^\circ$. Parameter CK_2 – pitch of imaginary screw surfaces. In Fig. 11 shows the conjugation of real helicoids, in Fig. 12 – imaginary and in Fig. 13 are pairwise conjugate real and imaginary helicoids.
5 Conclusions and acknowledgement

The theoretical initial (primary) surfaces in the gears with skew axes are rotational hyperboloids whose individual parts touching along straight lines can be used to design helical cylindrical gears (helical gears) and spiral bevel gears (hypoid gearing) [3, 4].

The conducted research graphically proves this accepted concept of auxiliary surfaces in transmissions with skew axes. Using KSD for conjugate hyperboloids it is possible to design new helical and hypoid gears. It is possible to design their initial surfaces in the graphical editor of AutoCAD which are shown in Fig. 14 in accordance with the diagram shown in Fig. 2. Cylindrical sections are located in the neck of the surface and conical - outside this zone.
Using the developed technique it is possible to design transmissions in which the initial surfaces are a hyperboloid and a convolute helicoid (Fig. 15) or two convolute helicoids (Fig. 16). In the case of diagrams for helicoids, it is necessary to construct a geometric model of conjugate surfaces since it is impossible to determine with the help of a diagram whether they will be interfaced or crossed.

Figure 15: The conjugate initial surfaces constructed using the diagram shown in Fig. 6

Figure 16: The conjugate initial surfaces constructed with using the diagram shown in Fig. 10

References

MODELOWANIE GEOMETRYCZNE SPRZĘŻONYCH POWIERZCHNI PROSTOKRĘŚLNYCH ZA POMOCĄ KINEMATYCZNego DIAGRAMU ŞRUBOWEGO

W przekładniach zębatych ze skośnymi osiami powierzchnie początkowe (generujące owe przekładnie) są hiperboloidami obrotowymi jednopowłokowymi. Parę powierzchni prostokrągłych stykających się wzdłuż linii prostych można wykorzystać do projektowania przekładni zębatych. Jednym ze sposobów modelowania geometrycznego sprzężonych początkowych powierzchni połączeń przestrzennych jest metoda zastosowania kinematycznego diagramu śrubowego, zaproponowanego przez A. Nikolaeva w 1950 roku. W artykule przedstawiono kilka problemów opartych na teorii Nikolaeva i opracowano geometryczne modele powierzchni o sprzężonych tworzących z wykorzystaniem diagramu. Przeprowadzone badania graficznie potwierdzają proponowaną teorię Nikolaeva i pozwalają na projektowanie nowych typów przekładni z przestrzennym zazębieniem.