Nowa wersja platformy jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 35, no. 4 | 296--303
Tytuł artykułu

Evaluation of the biocompatibility of a hydroxyapatite-CaTiO3 coating in vivo

Warianty tytułu
Języki publikacji
Objective: This study was designed to evaluate the biocompatibility and osteointegrative activity of hydroxyapatite (HA)-CaTiO3, titanium substrate, traditional HA coating and CaTiO3 coating via an animal experiment. Method: Four types of screws (type 1: coated with HA; type 2: coated with CaTiO3; type 3: coated with HA-CaTiO3; type 4: untreated titanium screws) were implanted into femur bone of 48 New Zealand rabbits. Histological and mechanical investigations were employed at the end of 2, 4, 8 and 12 weeks to evaluate the material osteointegration. Results: (1) All of the experimental rabbits were healthy during the experiment process. (2) Histological investigation showed fully regenerated and well integrated bone tissue surrounding the screws coated with HA, HA-CaTiO3 and CaTiO3. (3) Mechanical investigation showed that the bonding strength of HA-CaTiO3 coating was significantly higher than that of CaTiO3 coating or titanium materials without coating, but was lower than those coated with HA. Conclusion: HA-CaTiO3 coating possesses similar admirable biocompatibility and osteointegration activity with HA coating, indicating a promising coating material for implants in orthopedics.

Opis fizyczny
Bibliogr. 25 poz., rys., tab.
  • The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
  • The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
  • The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
  • The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
  • The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
  • The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,
  • The Third Xiangya Hospital of Central South University, Changsha, Hunan, China,
  • [1] Fujisawa A. Development and evaluation of a new surface treatment method for titanium alloy implants. Kokubyo Gakkai Zasshi 2004;71:112–9.
  • [2] Webster TJ, Ergun C, Doremus RH, et al. Increased osteoblast adhesion on titanium-coated hydroxylapatite that forms CaTiO3. J Biomed Mater Res A 2003;67:975–80.
  • [3] Okazaki Y, Rao S, Ito Y, et al. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V. Biomaterials 1998;19:1197–215.
  • [4] Pilliar RM, Cameron HU, Welsh RP, et al. Radiographic and morphologic studies of load-bearing porous-surfaced structured implants. Clin Orthop Relat Res 1981;249–57.
  • [5] Tolstunov L. Classification of the alveolar ridge width: implant-driven treatment considerations for the horizontally deficient alveolar ridges. J Oral Implantol 2014;40 Spec No:365–70.
  • [6] Chrzanowski W, Kondyurin A, Lee JH, et al. Biointerface: protein enhanced stem cells binding to implant surface. J Mater Sci Mater Med 2012;23:2203–15.
  • [7] Chrzanowski W, Szade J, Hart AD, et al. Biocompatible, smooth, plasma-treated nickel–titanium surface – an adequate platform for cell growth. J Biomater Appl 2012;26:707–31.
  • [8] Sul YT. The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials 2003;24:3893–907.
  • [9] Sul YT, Johansson C, Byon E, et al. The bone response of oxidized bioactive and non-bioactive titanium implants. Biomaterials 2005;26:6720–30.
  • [10] Jinno T, Kirk SK, Morita S, et al. Effects of calcium ion implantation on osseointegration of surface-blasted titanium alloy femoral implants in a canine total hip arthroplasty model. J Arthroplasty 2004;19:102–9.
  • [11] De Lange G, De Putter C. Structure of the bone interface to dental implants in vivo. J Oral Implantol 1993;19:123–35 [discussion 127–136].
  • [12] de Bruijn JD, Klein CP, de Groot K, et al. The ultrastructure of the bone–hydroxyapatite interface in vitro. J Biomed Mater Res 1992;26:1365–82.
  • [13] Rajzer I, Menaszek E, Kwiatkowski R, et al. Bioactive nanocomposite PLDL/nano-hydroxyapatite electrospun membranes for bone tissue engineering. J Mater Sci Mater Med 2014;25:1239–47.
  • [14] Rohanizadeh R, LeGeros RZ, Harsono M, et al. Adherent apatite coating on titanium substrate using chemical deposition. J Biomed Mater Res Part A 2005;72:428–38.
  • [15] Dohan Ehrenfest DM, Coelho PG, Kang BS, et al. Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends Biotechnol 2010;28:198–206.
  • [16] Zhou P, Akao M. Preparation and characterization of double layered coating composed of hydroxyapatite and perovskite by thermal decomposition. Biomed Mater Eng 1997;7:67–81.
  • [17] Fu DL, Jiang QH, He FM, et al. Fluorescence microscopic analysis of bone osseointegration of strontium-substituted hydroxyapatite implants. J Zhejiang Univ Sci B 2012;13:364–71.
  • [18] He F, Yang G, Wang X, et al. Effect of electrochemically deposited nanohydroxyapatite on bone bonding of sandblasted/dual acid-etched titanium implant. Int J Oral Maxillofac Implants 2009;24:790–9.
  • [19] Zhang L, Williams M, Poh CF, et al. Toluidine blue staining identifies high-risk primary oral premalignant lesions with poor outcome. Cancer Res 2005;65:8017–21.
  • [20] Moroni A, Faldini C, Pegreffi F, et al. HA-coated screws decrease the incidence of fixation failure in osteoporotic trochanteric fractures. Clin Orthop 2004;87–92.
  • [21] Placzek R, Ruffer M, Deuretzbacher G, et al. The fixation strength of hydroxyapatite-coated Schanz screws and standard stainless steel Schanz screws in lower extremity lengthening: a comparison based on a new torque value index: the fixation index. Arch Orthop Trauma Surg 2006;126:369–73.
  • [22] Cooper LF, Zhou Y, Takebe J, et al. Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. titanium endosseous implants. Biomaterials 2006;27:926–36.
  • [23] Yang GL, He FM, Hu JA, et al. Effects of biomimetically and electrochemically deposited nano-hydroxyapatite coatings on osseointegration of porous titanium implants. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;107:782–9.
  • [24] Dubey AK, Tripathi G, Basu B. Characterization of hydroxyapatite-perovskite (CaTiO3) composites: phase evaluation and cellular response. J Biomed Mater Res B Appl Biomater 2010;95:320–9.
  • [25] Wang X, Li Y, Wei J, et al. Development of biomimetic nano-hydroxyapatite/poly(hexamethylene adipamide) composites. Biomaterials 2002;23:4787–91.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.