PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Nr 25 | s. 249--334
Tytuł artykułu

Model zmian powierzchni lodów morskich Arktyki (1979-2013) – zmienne sterujące w modelu „minimalistycznym” i ich wymowa klimatyczna

Autorzy
Treść / Zawartość
Warianty tytułu
EN
Model of changes in the Arctic sea-ice extent (1979-2013) – variables steering the 'minimalist' model and their climatic significance
Języki publikacji
PL
Abstrakty
PL
Praca omawia model zmian powierzchni zlodzonej Arktyki typu „białej skrzynki”, opierający się na dwu zmiennych niezależnych – wskaźniku oznaczonym jako DG3L, który charakteryzuje intensywność cyrkulacji termohalinowej (THC) na Atlantyku Północnym i wskaźniku D, który charakteryzuje cyrkulację atmosferyczną nad Arktyką. Objaśnienie konstrukcji obu wskaźników i wartości ich szeregów czasowych przedstawione jest w załącznikach Z1 i Z2. Okres opracowania obejmuje lata 1979-2013 i jest limitowany dostępnością danych o zmianach powierzchni lodów morskich w Arktyce. Model liniowy opierający się na tych zmiennych objaśnia ~72% wariancji rocznej powierzchni zlodzonej w Arktyce i powyżej 65% wariancji powierzchni zlodzonej w marcu (maksimum rozwoju powierzchni lodów) i wrześniu (minimum). Główną rolę w kształtowaniu tej zmienności odgrywa zmienność cyrkulacji termohalinowej, rola cyrkulacji atmosferycznej jest niewielka i wykazuje silną zmienność sezonową. Analiza tego modelu wykazała, że rzeczywiste zależności są nieliniowe, a zmiany pokrywy lodowej zachodzą w dwu odrębnych reżimach – „ciepłym” i „chłodnym”. Reżim „ciepły” funkcjonuje w sytuacji, gdy THC jest bardziej intensywna niż przeciętnie (wskaźnik DG3L > 0). Dochodzi wtedy do szybkiego spadku powierzchni lodów w okresie ciepłym – zwłaszcza we wrześniu i powolnego spadku rozmiarów pokrywy lodowej w marcu, cyrkulacja atmosferyczna w tym reżimie odgrywa istotną rolę w kształtowaniu zmian powierzchni lodów. Spadek natężenia THC poniżej przeciętnej (DG3L ≤ 0), z opóźnieniem około 6.letnim prowadzi, do przejścia do reżimu „chodnego”. W reżimie chłodnym następuje szybki przyrost powierzchni lodów w okresie ciepłym i bardzo powolny wzrost powierzchni lodów w marcu, rola cyrkulacji atmosferycznej w kształtowaniu zmienności pokrywy lodowej staje się nikła. Po dalszych kilku latach utrzymywania się reżimu „chłodnego” międzyroczne zmiany powierzchni zlodzonej stają się małe. Analizy związków między zmiennymi z przesunięciami czasowymi wykazały, że cyrkulacja atmosferyczna nad Arktyką stanowi funkcję THC. W rezultacie, za główną przyczynę zmian powierzchni zlodzonej Arktyki należy uznać rozciągnięte w czasie działanie zmian intensywności THC, które w rozpatrywanym okresie objaśnia ~90% wariancji rocznej powierzchni zlodzonej.
EN
The paper presents the assumptions and structure of statistical model reproducing the changes in sea ice extent in the Arctic, using the minimum number of steering variables. The data set of NASA's Goddard Space Flight Center (GSFC) nsidc0192_seaice_trends_climo/total-area-ice-extent/nasateam/ (Total Ice-Covered Area and Extent) was used as starting data in the calibration of this model. Its subsets characterizing the sea ice extent of the Arctic Ocean (ArctOcn), Greenland Sea (Grnland), Barents and Kara seas (BarKara) were used. Their sums create a new variable known as the ‘Proper Arctic’. This model also used the following subsets: Archipelago Canadian (CanArch), Bay and Strait Hudson (Hudson), and Baffin Bay and Labrador Sea (Baffin), the sum of which creates another variable the ‘American Arctic’. The sum of all the above mentioned subsets creates a variable defined as the ‘entire Arctic’. The study covered the period 1979-2013, for which the said data set is made up of uniform and reliable data based on satellite observations. The model was developed for moments of maximum (March) and minimum (September) development of sea ice extent as well as for the annual average sea ice extent. After presenting the assumptions of the model (model type ‘White box’), formal analysis of the type and characteristics of the model, the choice of steering variables (independent; Chapters 3 and 4) was made. The index characterizing the intensity of thermohaline circulation (THC) in the North Atlantic, referred to as DG3L and an index characterizing atmospheric circulation having significant influence on changes in sea ice extent, marked as D, were used as independent variables in this model. Physical fundamentals and rules for calculating the DG3L index are discussed in detail in Annex 1, and the D index in Annex 2. These Annexes also include time series of both indexes (DG3L – 1880-2015; D – 1949-2015). Research into delays between the impact of variables and changes in sea ice extent indicated that sea ice extent showed maximum strength of the correlation with the DG3L variable with a three-year delay and with D variable with zero delay. The final form of the model is a simple equation of multiple regression (equation [1]). The following equations are used for estimating the regression parameters for individual sea areas in those time series: the Proper Arctic – equation [1a, 1b, 1c]; the American Arctic – equations [2a, 2b, 2c] and for the entire Arctic - equation [3a, 3b, 3c]. Statistical characteristics of each model are presented in Tables 3, 4 and 5, and Figures 2, 3 and 4 respectively and show the scattering of values estimated by means of each model in relation to the observed values. All models show high statistical significance. The best results, both in terms of explanation of the variance of the observed sea ice extent, as well as the size of the standard errors of estimation of sea ice extent are obtained for changes in the sea ice extent of the entire Arctic. The reasons for this may be traced back to the fact that errors in the estimation of partial models ([1a, 1b, 1c] and [2a, 2b, 2c]) have different signs, which in a synthetic model partially cancel out each other. Moreover, if the variable DG3L three years before shows strong and evenly distributed in time action, the D variable characterizing atmospheric circulation shows clearly seasonal activity – it is marked only during the minimum development of sea ice extent (September), when the degree of ice concentration is reduced, allowing its relatively free drift. The model for the annual average of sea ice extent of the entire Arctic (in the accepted limits) explains 71.5% of the variance, in September 68%, and in March 65% of the variance (Table 5). The lowest values are obtained for the American Arctic, where the D variable, characterizing atmospheric circulation does not appear to have significant influence, so the model is a linear equation with one variable (DG3L). Nevertheless, also in this case, the variance of the annual sea ice extent in the American Arctic is explained exceeding 50%. Variability of THC (described by the DG3L index) explains ~67% of the variance of annual sea ice extent and variability of atmospheric circulation (described by the D index) explains ~6% of the variance of annual sea ice extent of the entire Arctic. It allows claiming that THC and atmospheric circulation are the essential factors that influence the variability of sea ice extent of the Arctic. Both of these factors are natural factors. Further analysis of the results presented by various models and especially those affected by the DG3L variable (Fig. 5) delayed by three years suggests that the linear model is not the most appropriate model reflecting the changes in the sea ice extent of the entire Arctic and its parts. The action of DG3L variable, accumulated over several years, is saved and this causes that a strong significant correlation with the sea ice extent is prolonged. The analysis carried out by means of the segmented regression showed that the variability of sea ice extent was different where THC is lower than the average (DG3L ≤ 0), or different where THC is stronger than average (DG3L> 0; see equation [4a, 4b]). When the index is zero or less than zero, the impact of THC on the increase in sea ice extent is limited and the influence of changes in atmospheric circulation on sea ice extent is very small. Conversely, when the THC becomes intense and imports increased amounts of heat to the Arctic, the influence of DG3L index on the decrease in sea ice extent rises, like growing impact of atmospheric circulation on variation of sea ice extent (see equations [5a, 5b]. The segmented regression equations with these two variables explain 88.76% of the observed annual variation of sea ice extent of the entire Arctic (equations [5a, 5b]).This means that the sea ice extent of the Arctic is variable in two distinct regimes – ‘warm’, when the DG3L> 0 and ‘cold’, when the DG3L ≤ 0. This is similar to the results of Proshutinsky and Johnson (1997), Polyakov et al. (1999) and Polyakov and Johnson (2000) and their LFO oscillation. Time limits of the transition intensity of the THC phases from the positive to negative and vice versa correspond to similar limits of LFO, suggesting that the two different systems have the same cause. Polyakov and Johnson (2000) and Polyakov et al. (2002, 2003, 2004, 2005) can see the main reason for the change in the LFO regime in the transition of atmospheric circulation from anticyclonic regime to cyclonic regime and vice versa. The analysis of the reason for the transition of regime of changes in sea ice extent from ‘warm’ to ‘cold’ and vice versa – THC or atmospheric circulation – has shown that the D index is a function of previous changes in DG3L index. Atmospheric circulation over the Arctic shows a greater delay in response to changes in THC than the sea ice extent – this occurs with a 6-year delay (see Table 6, Equation 6). This allows replacing the D variable in the equations describing the change in sea ice extent, directly by DG3L variable from 6 years before (see Equation [7a, 7b]).These simultaneous equations explain about 90% of the observed annual variance of the sea ice extent of the entire Arctic in the years 1979-2013. Most importantly, however, it can be stated, with a high degree of certainty, that the variability of THC of the North Atlantic steers both the changes in sea ice extent and Basic features of atmospheric circulation over the Arctic. The effects of other factors than THC, having influence on variability of sea ice extent and the basic processes of the climate in the Arctic, in the short time scales, leave not too much space/place. The transition from ‘cold’ to ‘warm’ regime in the development of the sea ice extent in the Arctic requires an increase in the intensity of THC. If the values of DG3L index are greater than 0 for a period not shorter than three years, the decrease in the sea ice extent will start, initially in the period of its minimum development (August, September). If the resultant values of the DG3L index have positive values for further three years, the atmospheric circulation will transform into a cyclonic circulation (D index goes to positive values). The role of atmospheric circulation during the ‘warm’ season in the Arctic having influence on the change (reduction) of the sea ice extent becomes significant. The ‘warm’ regime will remain as long as long after its start the situation in which the algebraic sum of DG3L values is greater than 0. If such a situation lasts long, or in case of accumulation of high values of DG3L index, the sea ice cover can disappear almost completely in the warm period. The transition from the ‘warm’ regime to the ‘cold’ regime demands fulfillment of reverse conditions – a consistent decrease in the values of DG3L index into negative values for at least another three year period. After three years this will result in rapid increase in sea ice extent during warm period, thereby increasing the annual average of sea ice extent. If in subsequent years the value of DG3L index remains lower than zero, after the next 3-4 years, the atmospheric circulation will become the anticyclonic circulation. After that there will be gradual, slow growth in sea ice extent, decrease in air temperature, increase in ice thickness and change in the age of the ice structure towards the increase in the multi-year ice. The ice cover in the Arctic will become "self-sustaining", reducing interannual variability. Major changes will occur in the ‘warm’ season, minor in other seasons. The maximum sea ice extent of the Arctic in the cold season, with current conditions in the ‘cold’ regime, can reach ~13.5-14.5 million km2, the average annual sea ice extent should be ~12 (± 0.5) million km2. This area, especially in the winter season, may be in fact higher, since the weakening of the THC must also lead to a decrease in air temperature in the hemisphere.
Wydawca

Rocznik
Tom
Strony
s. 249--334
Opis fizyczny
Bibliogr. 145 poz., rys., tab.
Twórcy
autor
Bibliografia
  • 1. Aagaard K., Carmack E.C., 1989. The role of sea ice and other fresh water in the Arctic circulation. Journal of Geophysical Research, 94: 14 48514 498.
  • 2. Abruzuarov Z.K., 1976. Prognoz tolshchiny izotermicheskogo sloya okeana v period okhlaždeniya. Trudy Gidrometeorologichesko Nauchno-Issledovatelskogo Centra SSSR, vyp. 182: 63-70.
  • 3. Alekseev G.V., 2003. Issledovaniya izmenenii klimata Arktiki w XX stoletii. Trudy AANII, 446: 6-21.
  • 4. Alekseev G.V., 2015. Proyavlenie i usileniye globalnogo potepleniya v Arktike. Fundamentalnaya i Prikladnaya Klimatologiya, 1/2015: 11-26.
  • 5. Alekseev G.V., Ivanov N.E., Pniushkov A.V., Balakin A.A., 2010. Izmeneniya klimata v morskoi Arktike b nachale XX weka. Problemy Arktiki i Antarktiki, 3 (86): 22-34.
  • 6. Alekseev G.V., Radionov V.F., Aleksandrov E.I., Ivanov N.E., Kharlanenkova N.E. 2015. Izmenenya klimata Arktiki pro globalnom poteplenii. Problemy Arktiki i Antarktiki, 1(2015): 32-41.
  • 7. Ambaum M.H.P., Hoskins B.J., Stephenson D.B., 2001. Arctic Oscillation or North Atlantic Oscillation? Journal of Climate, 14: 3495-3507.
  • 8. Baranov E.I., 1979. Izmenchivost’ raskhodov vody na standartnykh razrezakh cherez Golfstrim, Floridskoe i Antilskoe techeniya. Trudy GOI, 146: 3-13.
  • 9. Baryshevskaya G.I., Shinkevich N.G., 1979. O vozmozhnykh prichinakh izmeneniya razkhodov vod yuzhnoj vetvii Golfstrima. Trudy GOI, 150: 76-82.
  • 10. Belkin I.M., Levitus S., Antonov J., Malmberg S-A., 1998. "Great Salinity Anomalies" in the North Atlantic. Progress in Oceanography, 41: 1-68.
  • 11. Bengtsson L., Semenov V.A., Johannessen O.M., 2004. The Early Twentieth-Century Warming in the Arctic – A Possible Mechanism. Journal of Climate, 17 (20): 4045-4057.
  • 12. Bjerknes J., 1964. Atlantic air-sea interaction. Advances in Geophysics,10: 1-82. Academic Press, New York.
  • 13. Broecker W., 1991. The great ocean conveyor. Oceanography, 4: 79-89.
  • 14. Budyko M.I., 1962. Polyarnye l'dy i klimat. Izvestiya AN SSR, Ser. Geograf., 6: 3-10.
  • 15. Budyko M.I., 1969. The effect of solar radiation variations on the climate of the Earth. Tellus, 21: 611-619.
  • 16. Budyko M.I., 1971. Klimat i zhizn'. Gidrometeoizdat, Leningrad: 470 s.
  • 17. Budyko M.I., 1974. Izmeneniya klimata. Gidrometeoizdat, Leningrad: 279 s.
  • 18. Cavalieri D.J., Parkinson C.L., Vinnikov Y., 2003. 30-Year Satellite Record Reveals Contrasting Arctic and Antarctic Decadal Sea Ice Variability. Geophysical Research Letters 30 (18), doi: 10.1029/2003GL018031.
  • 19. Cavalieri D.J., Parkinson D.L., 2012. Artic sea ice variability and trends, 1979-2010. The Crysphere, 6: 881-889. doi: 10.5194/tc-6-881-2012.
  • 20. Chylek P., Folland C.K., Frankcombe L.M., Dijkstra H.A., Lesins G., Dubey M.K., 2012. Greenland ice core evidence for spatial and temporal variability of the Atlantic Multidecadal Oscillation. Geophysical Research Letters, 39 (9)., L09606. doi: 10.1029/2012GL051611.
  • 21. Chylek P., Folland C.K., Lesins G., Dubey M.K., Wang M.,2009. Arctic air temperature change amplification and the Atlantic Multidecadal Oscillation, Geophysical Research Letters, 36, L14801, doi:10.1029/2009GL038777.
  • 22. Ciołkosz A., 2007. Dynamika zmian pokrywy lodowej w obszarach podbiegunowych w świetle obrazów teledetekcyjnych [w:] red. A. Marsz i A. Styszyńska: Zmiany klimatyczne w Arktyce i Antarktyce w ostatnim pięćdziesięcioleciu XX wieku i ich implikacje środowiskowe. Wyd. AM, Gdynia: 315-327.
  • 23. Comiso J.C., Nishio F., 2008. Trends in the Sea Ice Cover Using Enhanced and Compatible AMSR-E, SSM/I, and SMMR Data. Journal of Geophysical Research 113 (C02S07), doi:10.1029/2007JC004257.
  • 24. Delworth T.L., Knutson T.R., 2000. Simulation of Early 20th Century Global Warming. Science, 287 (5461): 2246 -2250.
  • 25. Delworth T.L., Mann M.E., 2000. Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dynamics, 16 (9): 661-676.
  • 26. Deser C., 2000. On the teleconnectivity of the ‘‘Arctic Oscillation’’. Geophysical Research Letters, 27 (6): 779-792. doi: 10.1029/1999GL010945.
  • 27. Deser C., Walsh J.E., Timlin M.S., 2000. Arctic sea ice variability in the context of recent wintertime atmospheric circulation trends. Journal of Climate, 13 (3): 617-633.
  • 28. Dickson R.R., Brown J., 1994. The production of North Atlantic Deep Water: Sources, rates, and pathways. Journal of Geophysical Research, 99 (C6): 12 319-12 341.
  • 29. Dickson R.R., Meincke J., Malmberg S-A., Lee A.J., 1988. The „Great Salinity Anomaly” in the Northern North Atlantic 1968-1982. Progress in Oceanography, 20 (2): 103-151.
  • 30. Dickson R.R., Osborn T.J., Hurrell J.W., Meincke J., Blindheim J., Adlandsvik B., Vinje T., Alekseev G., Maslowski W., 2000. The Arctic Ocean response to the North Atlantic Oscillation. Journal of Climate, 13 (15): 2671-2696.
  • 31. Dima M., Lohmann G., 2006. A Hemispheric Mechanism for the Atlantic Multidecadal Oscillation. Journal of Climate, 20 (11): 2706-2719.
  • 32. Doronin Yu.P., 1969. Teplovoe vzaimodejstvie atmosfery i gidrosfery v Arktike. AANII, Gidrometeoizdat, Leningrad: 299 s.
  • 33. Doronin Yu.P., Khejsin D.E., 1975. Morskoj led. Gidrometeoizdat, Leningrad: 318 s.
  • 34. Draper N.R., Smith H., 1973. Analiza regresji stosowana. PWN, Warszawa: 459 s.
  • 35. Drinkwater K.F., Meyers R.A., Pettipas R.G., Wright T.L., 1994. Climatic Data for the Northwest Atlantic: the position of the shelf / slope front and the northern boundary of the Gulf Stream between 50°W and 75°W, 1973-1992. Canadian Data Report of Fisheries and Ocean Sciences 125: iv + 103 s.
  • 36. Enfield D.B., Mestas-Nunez A.M., Trimble P.J., 2001. The Atlantic Multidecadal Oscillation and its Relation to Rainfall and River Flows in the Continental U.S. Geophysical Research Letters, 28 (10): 2077-2080.
  • 37. Francis J.A., Chan W., Leathers D.J., Miller J.R., Veron D.E., 2009. Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophysical Research Letters, 36, L07503, doi:10.1029/2009GL037274.
  • 38. Goosse H., Holland M.M., 2005. Mechanisms of Decadal Arctic Climate Variability in the Community Climate System Model, Version 2 (CCSM2). Journal of Climate, 18 (17): 3552-3570.
  • 39. Gray S.T., Graumlich L.J., Betancourt J.L., Pederson G.T., 2004. A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D. Geophysical Research Letters, 31, L12205, doi:10.1029/2004GL019932.
  • 40. Häkkinen S., 1993. An Arctic source for the great salinity anomaly: A simulation of the Arctic ice-ocean system for 1955-1975. Journal of Geophysical Research, 98 (C9): 16 397-16 410. doi:10.1029/93JC01504.
  • 41. Häkkinen S., 1999. A Simulation of Thermohaline Effects of a Great Salinity Anomaly. Journal of Climate, 22 (6): 1781-1795.
  • 42. Hansen J., Ruedy R., Glascoe J., Mki Sato, 1999. GISS analysis of surface temperature change. Journal of Geophysical Research, 104: 30997-31022, doi:10.1029/1999JD900835.
  • 43. Hansen J., Ruedy R., Mki Sato, Reynolds R., 1996. Global surface air temperature in 1995: Return to pre-Pinatubo level. Geophysical Research Letters, 23: 1665-1668, doi:10.1029/96GL01040.
  • 44. Hansen J.E., Ruedy R., Mki Sato, Imhoff M., Lawrence W., Easterling D., Peterson T., Karl T., 2001. A closer look at United States and global surface temperature change. Journal of Geophysical Research, 106: 23947-23963, doi:10.1029/2001JD000354.
  • 45. Hilmer M., Jung T., 2000. Evidence of recent change in the link between the North Atlantic oscillation and Arctic sea ice export. Geophysical Research Letters, 27: 989-992.
  • 46. Holland M.M., 2003. The North Atlantic Oscillation-Arctic Oscillation in the CCSM2 and its Influence on Arctic Climate Variability. Journal of Climate, 16(16): 2767-2781. doi: http://dx.doi.org/10.1175/1520-0442(2003)016<2767:TNAOOI>2.0.CO;2
  • 47. Holland M., Bailey D., Briegleb B., Light B., Hunke E., 2012. Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic sea ice. Journal of Climate, 25 (5): 1413-1430, doi:10.1175/JCLI-D-11-00078.1.
  • 48. Hurrell J.W., 1995. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science, 269: 676-679.
  • 49. Johannessen O.M., Bengtsson L., Miles M.W., Kuzmina S.I., Semenov V.A., Alekseev G.V., Nagurnyi A.P., Zakharov V.F., Bobylev L.P., Pettersson L.H., Hasselmann K., Cattle H.P., 2004. Arctic climate change: observed and modelled temperature and sea-ice variability. Tellus A, 56 (4): 328-341.
  • 50. Jones P.D., Jónsson T., Wheeler D., 1997. Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. International Journal of Climatology, 17 (13): 1433-1450.
  • 51. Jung T., Hilmer M., 2001. The link between the North Atlantic Oscillation and Arctic sea ice export through Fram Strait. Journal of Climate, 14 (19): 3932-3943.
  • 52. Jungclaus J.H., Haak H., Latif M., Mikolajewicz U., 2005. Arctic-North Atlantic Interactions and Multidecadal Variability of the Meridional Overturning Circulation. Journal of Climate, 18 (19): 4013-4031, doi: http://dx.doi.org/10.1175/JCLI3462.1.
  • 53. Kahl J.D., Charlevoix D.J., Zaftseva N.A., Schnell R.C., Serreze M.C., 1993. Absence of evidence for greenhouse warming over the Arctic Ocean in the past 40 years. Nature, 361: 335-337, doi:10.1038/361335a0
  • 54. Kahl J.D.W., Jansen M., Pulrang M.A., 2001. Fifty-Year Record of North Polar Temperatures Shows Warming. EOS, 82 (1): 1-5, doi:10.1029/01EO00002.
  • 55. Kalackij V.I., Nesterov E.S., 1976. Rasčet tolščiny odnorodnogo sloya okeana v severnoj Atlantike. Trudy Gidrometeorologičesko Naučno-Issledovatelskogo Centra SSSR, vyp. 182: 37-42.
  • 56. Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Leetmaa A., Reynolds B., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J. , Mo K.C., Ropelewski C., Wang J., Jenne R., Joseph D., 1996. The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77 (3): 437-471
  • 57. Kerr R.A., 2000. A North Atlantic Climate Pacemaker for the Centuries. Science, 288 (5473): 1984-1985, doi: 10.1126/science.288.5473.1984.
  • 58. Knight J.R., Allan R.J., Folland C.K., Vellinga M., Mann M.E., 2005. A signature of persistent natural thermohaline circulation cycles in observed climate. Geophysical Research Letters, 32, L20708, doi:10.1029/2005GL024233.
  • 59. Knight J.R., Folland C.K., Scaife A.A., 2006. Climate impacts of the Atlantic Multidecadal Oscillation. Geophysical Research Letters, 33, L17706, doi:10.1029/2006GL026242.
  • 60. Krahmann G., Visbeck M., 2003. Variability of the Northern Annular Mode’s signature in winter sea ice concentration. Polar Research, 22 (1): 51-57.
  • 61. Kvamstø N.G., Skeie P., Stephenson D.B., 2004. Impact of Labrador sea-ice extent on the North Atlantic Oscillation. International Journal of Climatology, 24: 603-612. doi:10.1002/joc.1015.
  • 62. Kwok R., 2000. Recent changes in Arctic Ocean sea ice motion associated with the North Atlantic Oscillation. Geophysical Research Letters, 27 (6): 775-778. doi:10.1029/1999GL002382.
  • 63. Kwok R., Cunningham G.F., Pang S.S., 2004. Fram Strait sea ice outflow. Journal of Geophysical Research, 109, C01009, doi:10.1029/2003JC001785.
  • 64. Landsberg H.E., 1974. Antropogennye izmeneniya klimata. [w:] WMO, Fizičeskaya i dinamičeskaya klimatologiya. Trudy simpoziuma po fizičeskoi i dinamičeskoi klimatologii, Leningrad, Avgust, 1974. Gidrometeoizdat, Lenigrad: 267-313.
  • 65. Latif M., Roeckner E., Botzet M., Esch M., Haak H., Hagemann S., Jungclaus J., Legutke S., Marsland S., Mikolajewicz U., Mitchell J., 2004. Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic Thermohaline Circulation with sea surface semperature. Journal of Climate, 17(7): 1605-1614.
  • 66. Leppäranta M., 2011. The Drift of Sea Ice (wyd. 2). doi: 10.1007/978-3-642-04683-4. Springer-Verlag Berlin Heidelberg: 350 s.
  • 67. Liu J., Curry J.A., Hu Y., 2004. Recent Arctic Sea Ice Variability: Connections to the Arctic Oscillation and the ENSO. Geophysical Research Letters, 31 (9): L09211, doi:10.1029/2004GL019858.
  • 68. Marsz A.A., 2007. Zmiany pokrywy lodów morskich Arktyki. [w:] red. A. Styszyńska i A. Marsz; Zmiany klimatyczne w Arktyce i Antarktyce w ostatnim pięćdziesięcioleciu XX wieku i ich implikacje środowiskowe. Wydawnictwo Uczelniane AM Gdynia: 145-193.
  • 69. Marsz A.A., 2008. Zmiany pokrywy lodów morskich Arktyki na przełomie XX i XXI wieku i ich związek z cyrkulacją atmosferyczną. Problemy Klimatologii Polarnej, 18: 7-33.
  • 70. Marsz A.A., Styszyńska A., 2009. Oceanic control of the warming processes in the Arctic – a different point of view for the reasons of changes in the Arctic climate. Problemy Klimatologii Polarnej, 19: 7-31.
  • 71. Marsz A.A., Styszyńska A., 2012. Temperatura wód atlantyckich na głębokości 200 m w Prądzie Zachodniospitsbergeńskim (76.5°N, 9-12°E), a temperatura powierzchni morza w tym rejonie (1996-2010). Problemy Klimatologii Polarnej, 22: 43-56.
  • 72. Marsz A.A., Styszyńska A., Zblewski S., 2008. Rozmiary i przebieg współczesnego ocieplenia Arktyki w rejonie mórz Barentsa i Karskiego. Problemy Klimatologii Polarnej, 18: 35-67.
  • 73. Manabe S., Stouffer R.J., 1980. Sensitivity of a global climate model to an increase of CO2 in the atmosphere. Journal of Geophysical Research, 85 (C10): 5529-5554.
  • 74. Maslanik J., Drobot S., Fowler C., Emery W., Barry R., 2007. On the Arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions. Geophysical Research Letters, 34, L03711. doi:10.1029/2006GL028269.
  • 75. Maslowski W., Newton B., Schlosser P., Semtner A., Martinson D., 2000. Modeling Recent Climate Variability in the Arctic Ocean. Geophysical Research Letters, 27 (22): 3743-3746. doi:10.1029/1999GL011227.
  • 76. Miles M.W., Divine D.V., Furevik T., Jansen E., Moros M., Ogilvie A.E.J., 2014. A signal of persistent Atlantic multidecadal variability in Arctic sea ice. Geophysical Research Letters 41 (2): 463-469. doi:10.1002/2013GL058084.
  • 77. Miller G.H., Alley R.B., Brigham-Grette J., Fitzpatrick J.J., Polyak L., Serreze M.C., White J.W.C., 2010. Arctic amplification: can the past constrain the future? Quaternary Science Reviews 29: 1779-1790. doi:10.1016/j.quascirev.2010.02.008.
  • 78. Mysak L.A., Ingram R.G., Wang J., van der Baaren A., 1996. The anomalous sea-ice extent in Hudson Bay, Baffin Bay and the Labrador Sea during three simultaneous NAO and ENSO episodes. Atmosphere-Ocean, 34 (2): 313-343.
  • 79. Ogi M., Wallace J.M., 2007. Summer minimum Arctic sea ice extent and the associated summer atmospheric circulation. Geophysical Research Letters, 34 (12), L12705. doi:10.1029/2007GL029897.
  • 80. Overland J.E., Wang M., 2005., The Arctic climate paradox: The recent decrease of the Arctic Oscillation. Geophysical Research Letters, 32, L06701, doi:10.1029/2004GL021752.
  • 81. Overland J.E., Wang M., 2010. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A, 62 (1) : 1-9. doi:10.1111/j.1600-0870.2009.00421.x.
  • 82. Parkinson C.L., 2000. Recent trend reversals in Arctic sea ice extents: Possible connections to the North Atlantic Oscillation. Polar Geography, 24 (1): 1-12.
  • 83. Parkinson C.L., Comiso J.C., 2008. Antarctic Sea Ice Parameters from AMSR-E Data Using Two Techniques and Comparisons with Sea Ice from SSM/I. Journal of Geophysical Research, 113 (C02S06), doi:10.1029/2007JC004253.
  • 84. Pavlova T.V., Katcov V.M., 2013. Ploshchad' ledyanogo pokrova Mirovogo okeana v raschetakh c pomoshchiyu modelej CIMP-5. Trudy GGO, 568: 7-25.
  • 85. Pavlova T.V., Katcov V.M., Govorkova V.A., 2011. Morskoi led v modelyakh CIMP5: blizhe k realnosti? Trudy GGO, 564: 7-18.
  • 86. Pithan E., Mauritsen T., 2014. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature Geoscience. doi:10.1038/ngeo2071.
  • 87. Polyakov I.V., Alekseev G.A., Bekryaev R.V., Bhatt U., Colony R.L., Johnson M.A., Karklin V.P., Makshtas A.P., Walsh D., Yulin A.V., 2002. Observationally based assessment of polar amplification of global warming. Geophysical Research Letters, 29 (18): 25-1-25-4. doi:10.1029/2001GL011111.
  • 88. Polyakov I.V., Alekseev G.V., Timokhov L.A., Bhatt U.S., Colony R.L., Simmons H.L., Walsh D., Walsh J.E., Zakharov V.F., 2004. Variability of the intermediate Atlantic water of the Arctic Ocean over the last 100 years. Journal of Climate, 17 (23: 4485-4497.
  • 89. Polyakov I.V., Bekryaev R.V., Alekseev G.V., Bhatt U.S., Colony R.L., Johnson M.A., Maskshtas A.P., Walsh D., 2003. Variability and Trends of Air Temperature and Pressure in the Maritime Arctic, 1875-2000. Journal of Climate, 16 (12): 2067-2077.
  • 90. Polyakov I.V., Beszczynska A., Carmack E.C., Dmitrenko I.A., Fahrbach E., Frolov I.E., Gerdes R., Hansen E., Holfort J., Ivanov V.I., Johnson M.A., Karcher M., Kauker F., Morison J., Orvik K.A., Schauer U., Simmons H.L., Skagseth Ø., Sokolov V.T., Steele M., Timokhov L.A., Walsh D., Walsh J.E., 2005. One more step toward a warmer Arctic. Geophysical Research Letters, 32, L17605, doi:10.1029/2005GL023740.
  • 91. Polyakov I.V., Johnson M.A., 2000. Arctic decadal and interdecadal variability. Geophysical Research Letters, 27 (24): 4097-4100. doi:10.1029/2000GL011909.
  • 92. Polyakov I.V., Proshutinsky A.Y., Johnson M.A., 1999. Seasonal cycles in two regimes of Arctic climate. Journal of Geophysical Research (Oceans), 104 (C11): 25761-25788. doi: 10.1029/1999JC900208.
  • 93. Polyakov I.V., Timokhov L.A., Alexeev V.A., Bacon S., Dimitrenko I.A., Fortier L., Frolov I.E., Gascard J-C., Hansen E., Ivanov V.V., Laxon S., Mauritzen C., Perovich D., Shimada K., Simmons H.L., Sokolov V.T., Steele M., Toole J., 2010. Arctic Ocean Warming Contributes to Reduced Polar Ice Cap. Journal of Physical Oceanography, 40: 2743-2756. doi:10.1175/2010JPO4339.1.
  • 94. Proshutinsky A., Bourke R. H. , McLaughlin F.A., 2002. The role of the Beaufort Gyre in Arctic climate variability: Seasonal to decadal climate scales. Geophysical Research Letters, 29 (23), 2100; 15.1-15.4, doi: 10.1029/-2002GL015847.
  • 95. Proshutinsky A., Dukhovskoy D., Timmermans M-L., Krishfield R., Bamber J.L., 2015. Arctic circulation regimes. The Royal Society, Philosophical Transactions A, 373 (2052); 20140160. http://dx.doi.org/10.1098/rsta. 2014.0160.
  • 96. Proshutinsky A.Y. Johnson M.A., 1997. Two circulation regimes of the wind-driven Arctic Ocean. Journal of Geophysical Research, 102 (C6): 12493-12514. doi:10.1029/97JC00738.
  • 97. Proshutinsky A.Y., Johnson M., 2001. Two Regimes of the Arctic's Circulation from Ocean Models with Ice and Contaminants. Marine Pollution Bulletin, 43 (1-6): 61-70.
  • 98. Proshutinsky A., Krishfield R., Timmermans M.-L., Toole J., Carmack E., McLaughlin F., Williams W. J., Zimmermann S., Itoh M., Shimada K., 2009. Beaufort Gyre freshwater reservoir: State and variability from observations. Journal of. Geophysical Research, 114; C00A10. doi:10.1029/2008JC005104.
  • 99. Rampal P., Weiss J., Dubois C., Campin J.-M., 2011. IPCC climate models do not capture Arctic sea ice drift acceleration: Consequences in terms of projected sea ice thinning and decline. Journal of Geophysical Research, 116, C00D07. doi:10.1029/2011JC007110.
  • 100. Rigor I.G., Wallace J.M., 2004. Variations in the age of Arctic sea-ice and summer sea-ice extent. Geophysical Research Letters, 31 (9), L09401. doi: 10.1029/2004GL019492.
  • 101. Rigor I.G., Wallace J.M., Colony R. L., 2002. Response of sea ice to the Arctic oscillation, Journal of Climate, 15 (18): 2648-2663. doi: http://dx.doi.org/10.1175/1520-0442(2002) 015<2648:ROSITT>2.0.CO;2
  • 102. Rogers J.C., 1984. The Association between the North Atlantic Oscillation and the Southern Oscillation in the Northern Hemisphere. Monthly Weather Review, 112 (10): 1999-2015. doi: http://dx.doi.org/10.1175/1520-0493(1984)112<1999:TABTNA>2.0.CO;2.
  • 103. Rogers J., McHugh M., 2002. On the separability of the North Atlantic oscillation and Arctic oscillation. Climate Dynamics, 19 (7): 599-608.
  • 104. Rogers J.C., van Loon H., 1979. The Seesaw in Winter Temperature between Geenland and Northern Europe, Part II: Some Oceanic and Atmospheric Effects in Middle and High Latitudes. Monthly Weather Review, 107: 509-519.
  • 105. Rogers J.C., Wang S-H., Bromwich D.H., 2004. On the role of the NAO in the recent northeastern Atlantic Arctic warming. Geophysical Research Letters, 31, L02201, doi:10.1029/2003GL018728.
  • 106. Rogers J.C., Yang L., Li L., 2005. The role of Fram Strait winter cyclones on sea ice flux and on Spitsbergen air temperatures. Geophysical Research Letters, 32 (6), L06709.
  • 107. Schmith T., Hansen C., 2003. Fram Strait Ice Export during the Nineteenth and Twentieth Centuries Reconstructed from a Multiyear Sea Ice Index from Southwestern Greenland. Journal of Climate, 16 (16): 2782-2791. doi: http://dx.doi.org/10.1175/1520-0442(2003)016<2782:FSIEDT>2.0.CO;2
  • 108. Schweiger A., Lindsay R., Zhang J., Steele M., Stern H., 2011. Uncertainty in modeled arctic sea ice volume. Journal of Geophysical Research, 116 (C8), C00D06. doi:10.1029/2011JC007084.
  • 109. Serreze M.C., Barry R.G., 2011. Processes and impacts of Arctic amplification: A research synthesis. Global and Planetary Change, 77: 85-96. doi:10.1016/j.gloplacha.2011.03.004.
  • 110. Serreze M.C., Francis J.A., 2006. The Arctic Amplification debate. Climatic Change, 76 (3): 241-264. doi:10.1007/s10584-005-9017-y.
  • 111. Serreze M.C., Holland M.M., Stroeve J., 2007. Perspectives on the Arctic's Shrinking Sea-Ice Cover. Science, 315: 1533-1536.
  • 112. Serreze M.C., Maslanik J.A., Scambos T.A., Fetterer F., Stroeve J., Knowles K., Fowler C., Drobot S., Barry R.G, Haran T.M., 2003. A record minimum arctic sea ice extent and area in 2002. Geophysical Research Letters, 3 (3), 1110. doi:10.1029/2002GL016406
  • 113. Shimada K., Kamoshida T., Itoh M., Nishino S., Carmack E., McLaughlin F., Zimmermann S., Proshutinsky A., 2006. Pacific Ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean. Geophysical Research Letters, 33 (8), doi:10.1029/2005GL025624.
  • 114. Smedsrud L.H., Sirevaag A., Kloster K., Sorteberg A., Sandven S., 2011. Recent wind driven high sea ice area export in the Fram Strait contributes to Arctic sea ice decline. The Cryosphere, 5: 821-829. doi:10.5194/tc-5-821-2011.
  • 115. Smith T.M., Reynolds R.W., 2004. Improved Extended Reconstruction of SST (1854-1997). Journal of Climate, 17 (12): 2466-2477.
  • 116. Smith T.M., Reynolds R.W., Peterson T.C., Lawrimore J., 2008. Improvements to NOAA's Historical Merged Land-Ocean Surface Temperature Analysis (1880-2006). Journal of Climate, 21 (10): 2283-2296.
  • 117. Sou T., Flato G., 2010. Sea Ice in the Canadian Arctic Archipelago: Modeling the Past (1950-2004) and the Future (2041-60). Journal of Climate, 22 (8): 2181-2198.
  • 118. Statistica PL dla Windows. T.1. Ogólne konwencje i statystyki 1, 1997. Wyd. StatSoft Polska, Kraków: 1877 s.
  • 119. Stroeve J., Holland M.M., Meier W., Scambos T., Serreze M., 2007. Arctic sea ice decline: Faster than forecast, Geophysical Research Letters, 34, L09501, doi:10.1029/2007GL029703.
  • 120. Stroeve J. C., Kattsov V., Barrett A., Serreze M., Pavlova T., Holland M., Meier W. N., 2012. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophysical Research Letters, 39, L16502, doi:10.1029/2012GL052676.
  • 121. Stroeve J.C., Serreze M.C., Holland M.M., Kay J.E., Malanik J., Barrett A.P., 2012. The Arctic's rapidly shrinking sea ice cover: a research synthesis. Climatic Change, 110: 1005-1027. doi:10.1007/s10584-011-0101-1.
  • 122. Styszyńska A., 2004. Współzależności zmian klimatycznych w Arktyce w XX wieku z procesami oceanicznymi. Polish Polar Studies, XXX Międzynarodowe Sympozjum Polarne, Gdynia: 357-368.
  • 123. Styszyńska A., 2005. Przyczyny i mechanizmy współczesnego (1982-2002) ocieplenia atlantyckiej Arktyki. Wydawnictwo Uczelniane AM, Gdynia: 109 s.
  • 124. Styszyńska A., 2007. Zmiany klimatyczne w Arktyce a procesy oceaniczne. [w:] red. A. Styszyńska i A. Marsz, Zmiany klimatyczne w Arktyce i Antarktyce w ostatnim pięćdziesięcioleciu XX wieku i ich implikacje środowiskowe. Wyd. Akademii Morskiej, Gdynia: 111-144.
  • 125. Sutton R.T., Hodson D.L.R., 2005. Atlantic Ocean forcing of North American and European summer climate. Science, 309: 115-118.
  • 126. Thompson D.W.J., Wallace J.M., 1998. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters, 25 (9): 1297-1300.
  • 127. Thompson D.W.J, Wallace J.M., 2000. Annular Modes in the Extratropical Circulation. Part I: Month-to-Month Variability. Journal of Climate, 13 (5): 1000-1016. doi: http://dx.doi.org/10.1175/1520-0442(2000)013<1000: AMITEC>2.0.CO;2.
  • 128. Thompson D.W.J., Wallace J.M., 2001. Regional Climate Impacts of the Northern Hemisphere Annular Mode. Science, 293 (5527): 85-89; doi:10.1126/science.1058958
  • 129. Thompson D.W.J., Wallace J.M., Hegerl G,C., 2000. Annular Modes in the Extratropical Circulation. Part II: Trends. Journal of Climate, 13 (5): 1018-1036. doi: http://dx.doi.org/10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2.
  • 130. Tsukernik M., Deser C., Alexander M., Tomas R., 2010. Atmospheric forcing of Fram Strait sea ice export: a closer look. Climate Dynamics, 35 (7-8): 1349-1360. doi:10.1007/s00382-009-0647-z.
  • 131. Turner J., Bracegridle T.J., Phillips T., Marshall G.J., Hosking J.S., 2013. An Initial Assessment of Antarctic Sea Ice Extent in the CMIP5 Models. Journal of Climate, 26 (5): 1473-1484. DOI: 10.1175/JCLI-D-12-00068.1.
  • 132. Vinje T., 2001. Fram Strait Ice Fluxes and Atmospheric Circulation: 1950-2000. Journal of Climate, 14 (16): 3508-3517. doi: http://dx.doi.org/10.1175/1520-0442(2001)014<3508: FSIFAA>2.0.CO;2.
  • 133. Vorobev V.N., Smirnov N.P., 2003. Arkticheskij anticiklon i dinamika klimata severnoj polyarnoj obl’asti. Wyd. Rosijskij Gosudarstvennyj Gidrometeorologicheskij Universitet, Sankt Peterburg: 81 s.
  • 134. Wallace J.M., Gutzler D.S., 1981. Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter. Monthly Weather Review, 109: 784-812.
  • 135. Wang J., Ikeda M., 2000. Arctic oscillation and Arctic sea-ice oscillation. Geophysical Research Letters, 27 (9): 1287-1290. doi:10.1029/1999GL002389.
  • 136. Wu B., Wang J., Walsh J.E., 2006. Dipole anomaly in the winter Arctic atmosphere and Its association with sea ice motion. Journal of Climate, 19 (2): 210-225.
  • 137. Zakharov V.F., 1981. L’dy Arktiki i sovremennye prirodnye processy. Gidrometeoizdat, Leningrad: 136 s.
  • 138. Zakharov V.F., 1987. Morskie l’dy i klimat. [w:] red. V.M. Kotlyakov i M.E. Grosvald: Vzaimodejstvie oledenenij s atmosferoj i okeanonom. Wyd. Nauka, Moskva; 66-90.
  • 139. Zakharov V.F., 1997. Sea ice in the climate system. Arctic Climate System Studies, Geneva, WMO/TD-No. 782. 81 s.
  • 140. Zakharov V.F., Malinin V.N., 2000. Morskie l’dy i klimat. Gidrometeoizdat, Sankt Peterburg: 92 s.
  • 141. Zhang R., 2015. Mechanisms for low-frequency variability of summer Arctic sea ice extent. PNAS, 112 (15): 4570-4575. doi/10.1073/pnas.1422296112.
  • 142. Zhang R., Delworth T.L., Held I.M., 2007. Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? Geophysical Research Letters, 34, L02709, doi:10.1029/2006GL028683.
  • 143. Zhang J.L., Rothrock D.A., 2003. Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Monthly Weather Review, 131: 845-861.
  • 144. Zhang X., Walsh J.E., 2006. Toward a Seasonally Ice-Covered Arctic Ocean: Scenarios from the IPCC AR4 Model Simulations. Journal of Climate, 19 (9): 1730-1747. doi:http://dx.doi.org/10.1175/JCLI3767.1 .
  • 145. Zhang L., Wang C., 2013. Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. Journal of Geophysical Research: Oceans, 118 (10): 5772-5791. doi:10.1002/jgrc.20390.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-caa2fe33-3728-49be-a3b0-1290688a9175
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.