Motorcycles – chosen aspects of army exploitation

Dariusz Woźniak, Katarzyna Gotowała, Jacek Woźniak

Key words: motorcycles, construction, maintenance-repair systems, exploitation standards.

Abstract
This article presents chosen aspects of motorcycle exploitation in contemporary armed forces. Certain types of motorcycles have been presented, as well as their technical solutions and parameters. The authors have made reference to the motorcycle maintenance-repair system and have analyzed chosen activities. Attention was paid to the practical aspects of the exploitation of such army equipment. The article takes into consideration the newly introduced professional regulations in the army regulating the topic of the exploitation of this group of army equipment. Pictures connected with this topic are enclosed as a supplement to the article.

Introduction
For a while now, one can observe an increase in the interest in army application of motorcycles. People started rediscovering their usefulness in various structures, e.g. in recon subunits, as liaison officer vehicles, in safety services, traffic regulation, gendarmerie or in special forces. Due to the lack of motorcycles dedicated specifically for army usage, militarized versions of civil motorcycles have started to come into use [1,7,12], with the division into light and medium motorcycles with two-stroke engines with a cubic capacity of 125 and 250 cm³, stemming from motocross or terrain endure motorcycles and heavy motorcycles with four-stroke engines with a capacity of between 350 and 1000 cm³ stemming from civil road models. Lighter models from the first group usually are better able to deal with difficult terrain, but they are not able to fully carry a passenger and additional load. The second group is able to carry a passenger and an additional load, however they are mainly able to deal with hardened roads. One has to note, however, that the terrain parameters of even the light motorcycles do not fully meet the army expectations concerning the driveability. One can also point out that the standard motorcycles from the civilian market have not fully covered the army’s needs. Concerning motorcycles of this type, there are currently attempts at introducing improved constructions. An example can be the exploitation of such motorcycles e.g. in the American army, as well as the continued production of typically military motorcycles for the armed forces of Russia, China, and a few other countries.

1. Motorcycle exploitation in the Polish Armed Forces in the post-war period
Various types of motorcycles have been exploited in the Polish Armed Forces in different periods of time [10,12] – also typically military ones, in solo versions, as well as ones with a sidcar.

During the last year of the war, up until the end of the 1940s, American Harley-Davidson WLA were the basic heavy motorcycles (fig. 1) [1]. In addition, there was also a small number of Indian 741B motorcycles (fig. 2) [1,10] and individual 640B and 340B models. These motorcycles were introduced into the Polish Armed Forces through the shipments made by Lend-Lease and UNRRA.

Fig. 1. A Harley-Davidson WLA military motorcycle

Fig. 2. An Indian 741B military motorcycle

The Harley Davidson motorcycle is equipped with a two-cylinder side valve V-engine with a cylinder capacity of 742 cm³ and 23 HP power at 4600 RPM. The weight of the motorcycle stood at 243 kg, the drive transferred the chain through a three-gear gearbox.

English military motorcycles, e.g. BSA M 20, Norton, Royal Enfield WD/C, have been introduced into the Polish armed forces similarly after the war, by UNRRA shipments.
Between the 1940s and the 1950s, due to the lack and depletion of spare parts, the Harley-Davidson WLA motorcycles were replaced with Soviet M-72 motorcycles (these were motorcycles based on the German BMW – R71, with a two-cylinder boxer engine with a cylinder capacity of 746 cm³). In the later period, the M-72 motorcycle was replaced with a newer K-750 type version. It is difficult to precisely determine the exact number of Harley-Davidson WLA motorcycles exploited in the army in the post-war period. During warfare, the motorcycles were destroyed. One can roughly estimate that there were approximately 1500-2500 Harley-Davidson WLA motorcycles in the Polish army between 1943-1956.

Several hundred Czechoslovakian Jawa 250 motorcycles were purchased by the Polish army between the 1940s and 1950s in a few batches (fig. 3) [1,10], as well as the 350 version (in smaller amounts).

2. Motorcycle exploitation in the Polish Armed Forces in the contemporary period

There are currently a few types of motorcycles exploited in the Polish Armed Forces and they are mainly used in special, security sub-units, in the tank-vehicle service and in the Gendarmerie. Gestor [3] has defined in [7] various standards for a given type of a motorcycle – exploitation standards, between-maintenance standards and the repair time consumption. The maintenance-repair system [12,13,15] is based on a given type of vehicle manufacturer instructions. These vehicles do not have a limit of annual resource consumption per unit, or an acceptable annual minimal resource for a group of equipment held in storage. Gestor has not foreseen any main repairs for this type of vehicles. According to [6], motorcycles are classified in group 6 (other vehicles), and they constitute the sub-group 6.2. The army currently exploits the following types of motorcycles [1]:
- Aprilia Pegaso – the target exploitation norm in years and kilometers is 10 years/150000 km,
- Cagiva 350 – the target exploitation norm in years and kilometers is 8 years/120000 km,
- Kawasaki LE 650 – the target exploitation norm in years and kilometers is 10 years/250000 km,
- KTM 640 LC – the target exploitation norm in years and kilometers is 8 years/120000 km,
- MZ 250 – the target exploitation norm in years and kilometers is 6 years/100000 km,
- WSK 125 – the target exploitation norm in years and kilometers is 6 years/100000 km,
- Yamaha XT 660 R – the target exploitation norm in years and kilometers is 10 years/250000 km,
- Intervention Yamaha Fazer – the target exploitation norm in years and kilometers is 10 years/250000 km,
- Intervention Kawasaki ZR 800 – the target exploitation norm in years and kilometers is 10 years/250000 km.

The basic inter-service period [5,6,12] for this group and for service period of the type OO-1 is 2000 km, and for OO-2 it is 400 km, the target exploitation norm is given in years and kilometers and for motorcycles it is set at 10 years/120000 km [7]. The sub-group 6.2 [5], as well as other groups of equipment [3,7] undergoes a certain system of exploitation [12,16] and is accounted for according to the rules in effect.

3. Motorcycle service and repairs

All motorcycle defects [2,8,17] are a result of incorrect cooperation of the parts, occurring when they are overexploited or damaged. It is also important problems of exploitation [21,23,27], transport [18-20,22,24-26] and storage [30]. In order
to eliminate or limit various types of defects, motorcycles need the development and realization of a consistent maintenance-repair system [5,12,13], including regular service, similarly to other groups of vehicles used as army equipment [5,7].

When defining the term 'motorcycle technical service', one can assume that it is a set of activities with the aim of maintaining the vehicle in fully operational condition. The technical condition of the motorcycles influences not only its trouble-free exploitation, but also the safety of the driver and other road users. Systematic and planned service greatly increases the durability of the individual motorcycle units, and the wear and tear goes almost exactly in the same way for all the mechanism parts cooperating with one another, depending on the machine's operating time. In the case of a motorcycle, one can assume that, if the motorcycle's servicing is done correctly, the wearing of a given element depends on its mileage.

4. Motorcycle maintenance and repair time

Time-consumption norms are expressed in man-hours and minutes needed for the execution of a given service/inspection. They are set by army guidelines and instructions [5,7,13,14,15] and, as it was mentioned before, also by the manufacturer's service/factory instructions. The carrying out of a service or repair requires a certain amount of time calculated in man-hours (MH). Table 1 [7] presents the time-consumption norms for technical services and repairs for vehicles taken care of by the Manager or Central Logistics Organ in the Leadership of the Tank-Vehicle Service Support Inspectorate. For the sake of comparison and potential analyses, the individual norms were presented comprehensively for army equipment within the tank-vehicle service.

As it was emphasized in e.g. [5,6,7,16], army regulations are the basis of carrying out servicing and repairs and the scope of maintenance activities. If this was not regulated by army regulations, the basis are factory/instructor instructions, manuals, technological guides of army equipment and other technical documents, which are treated as fundamental.

5. Chosen motorcycle profiles

5.1. The Aprilia Pegaso 650 motorcycle

Motorcycles of this type – fig. 5-6 [1] are produced by an Italian company which has also developed and introduced a factory maintenance-repair plan into the exploitation of motorcycles [4,12,29].
Table 2. The periodical maintenance schedule for Aprilia motorcycles

<table>
<thead>
<tr>
<th>No.</th>
<th>Motorcycle mileage in km (or period)</th>
<th>Type of service</th>
<th>Scope of activities</th>
<th>Technical-control parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Every 4 years</td>
<td></td>
<td>1. Warming indicators – check and replace if necessary. 2. Rearing of brake blocks – check and replace if necessary.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Every 4000</td>
<td></td>
<td>1. Front brake block – check and clean, replace if necessary. 2. Transmission – check and clean, set, grease and replace if necessary.</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Every 10000 km or every 12 months</td>
<td></td>
<td>1. Anti-vibration fastening and slide roll – replace.</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>After the first 30000 km and then after every 20000 km</td>
<td></td>
<td>1. Oil seal in the forks – replace.</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Every 4 years</td>
<td></td>
<td>1. Fuel lines – replace.</td>
<td></td>
</tr>
</tbody>
</table>

Engine and power train:
- One-cylinder engine type, cylinder capacity 650 cm³, liquid cooled,
- Maximum power – 50 HP, maximum torque 61 Nm at 5250 RPM,
- Cylinder diameter x piston stroke 100x85 mm,
- Compression ratio 10:1,
- SOHC valve train, 2 camshafts, electric start,
- Pressure greasing system with a wet oil pan, liquid cooled,
- 6-gear gearbox, chain power train.

Size and weight:
- Length 2,16 m, saddle height 0,78 m,
- Dry weight 161 kg.

Chassis - front tire 100/90/19, rear tire 130/80-R17.

Based on the available factory data from the manufacturer, the authors have prepared [4,12] in MH-form and grouped the specific types of maintenance activities for this type of motorcycle, depending on the mileage and exploitation time [5,6,16]. Such a schedule of periodical maintenance is presented in Table 2 [4].

The factory [4,12] recommends carrying out the maintenance-control activities twice as often as the periods described in the table above if the motorcycle is used in sandy, terrain or sport conditions.

Table 3 [4] describes the basic exploitation materials [11,12] recommended by the manufacturer, together with their replacements which are permitted by the factory.

5.1. The Yamaha XT 660 R motorcycle

Motorcycles of this type, fig. 7-8 [1] are produced by Yamaha. Their basic technical-exploitation specifications are as follows [1].

Engine and power train:
- Type of engine: one-cylinder, four-stroke, cylinder capacity 660 cm³, liquid cooled,
- Maximum power – 47,33 HP (34,5 kW), maximum torque 60 Nm at 6100 RPM,
Fig. 7. A view of the motorcycle

Fig. 8. A view of the console with the indicators

Table 3. List of exploitation materials

<table>
<thead>
<tr>
<th>No.</th>
<th>Specification</th>
<th>Unit of measurement</th>
<th>Type of exploitation material</th>
<th>Technical specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Fuel type</td>
<td>l</td>
<td>Unleaded, 91 RON or higher octane</td>
<td>Unleaded DIN 51 607 fuel with a minimal octane value of 95 (NORM) and 85 (NOMM).</td>
</tr>
<tr>
<td>2.</td>
<td>Motor oil</td>
<td>l</td>
<td>Agip Gear Synt SAE 75W-90</td>
<td>Motor oils from reputed manufacturers as well as motor oils compliant with the CM-4, API norms can be an alternative for the recommended motor oils.</td>
</tr>
<tr>
<td>3.</td>
<td>Gear oil</td>
<td>dm³</td>
<td>Agip Synt 5W or Agip 20W</td>
<td>If a half measure is required from the ones proposed, the product can be mixed: SAE 10W-30: AGIP 5W + 30% AGIP 20W; SAE 15W-40: AGIP 5W + 67% AGIP 20W.</td>
</tr>
<tr>
<td>4.</td>
<td>Brake fluid</td>
<td>dm³</td>
<td>Agip brake fluid DOT 4 PLUS</td>
<td>Other fluids with similar characteristics can be used as an alternative for the recommended fluid: ACE J1703, NHTSA 116 DOT 4, ISO 4925.</td>
</tr>
<tr>
<td>5.</td>
<td>Chain grease</td>
<td>l</td>
<td>Agip chain grease</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Steering and door pivot grease</td>
<td>l</td>
<td>Agip grease 30</td>
<td>Other greases of reputed manufacturers can be an alternative for the recommended greases. They would need to comply with the following requirements: a useful temperature section (-30 °C to +140 °C), condensation temperature (150 °C to 230 °C), high corrosion protection, resistance to water and rust.</td>
</tr>
<tr>
<td>7.</td>
<td>Technical Vaseline</td>
<td>l</td>
<td>Battery clamp conservation grease</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 9. A view of the console with the indicators

Engine and power train:
- type of engine: one-cylinder, four-stroke, cylinder capacity 660 cm³, liquid cooled,
- maximum power – 47.33 HP (34.5 kW), maximum torque 60 Nm at 6100 RPM,
- cylinder diameter x piston stroke 100x84 mm,
- power – fuel injection,
- SOHC valve train, electric start,
- pressure greasing system with a wet oil pan,
- 5-gear gearbox, chain power train,
- wet type clutch.

Size and weight:
- height 1.23 m, length 2.24 m, width 0.84 m, saddle height 0.86 m,
- clearance 0.21m, wheelbase 1.5 m,
- dry weight 172 kg.

Chassis:
- frame welded from steel pipes, suspension – front telescope fork,
- front suspension spring rate 22,5 cm, rear suspension – trailing arm, rear suspension spring rate 20,0 cm,
- front tire 120/70/17, rear tire 160/60/17,
- one-disk front brake, front disk diameter 298 mm,
- one-disk rear brake, rear disk diameter 245 mm,
- 15 l fuel tank,
- fuel consumption approximately 4.5 l/100 km.

5.2. The MZ 250 motorcycle
MZ ETZ type motorcycles – fig. 9 [1,12] were produced in the years 1981-1989 by Motorradwerk Zschopau in the former East Germany.
MZTS 250/1 were their predecessor. Models with a cylinder capacity of 250 cm³ were the biggest and the fastest single-track vehicles produced in the MZ factory between the 1980 and 1990s [1,9,12].

The EM 250 engine – fig. 10 [1] – is a typical two-stroke engine [12] with rinsing, air cooled. A duralumin, heavy finned cylinder with a head has cooling fins (only horizontal) with rubber elements which reduce noise. A cast-iron sleeve with a set of channels was casted inside the cylinder. A low torque is a characteristic feature of the EM 250 engines, in the scope of 3000 RPM and its fast growth above this value. The torque process itself indicates there are two peaks, one for 3500 RPM and a second one for 5200 RPM. This is the so-called double axis, frequently occurring in two-stroke engines with a high strain and with a piston camshaft. In practice, this is manifested in the fact that the motorcycle accelerates relatively slowly on low RPM, and starts accelerating rapidly when the engine RPM is above 3000-3500 RPM. This was characteristic of all the then manufactured motorcycles with two-stroke engines and this type of camshaft and with a similar strain.

A technical curiosity of the engine construction [9] is putting the clutch in the crankshaft. In the case of a one-cylinder engine, this e.g. enables a more stable operation in neutral and on low RPM due to a higher whirl mass. The engine’s torque is carried through a bevel gear onto the 5-gear gearbox, and then by the covered roll chain onto the rear wheel.

Below are the approximate values for the range between 3000 to 5800 RPM [9]:

- I gear 20 ... 35 km/h, II gear 30 ... 60 km/h, III gear 35 ... 85 km/h, IV gear 55 ... 110 km/h,
- V gear 70 ... 130 km/h.

The motorcycle’s maximum speed is 125-130 km/h, the acceleration (at 6000 RPM): from 0 to 8 km/h in 6,6 s, to 100 km/h – in 10,9 s.

Basic specifications [1,9,12]:

- weight when ready to drive 151 kg (153 in the disk brake version),
- gross vehicle weight approximately 330 kg,
- amount of oil in gearbox – 900 cm³ of SAE 80 gear oil,
- fuel tank – 17 l; 1,5l is the reserve,
- amount of liquid in spring elements – 250 cm³,
- maximum power at approximately 5500 RPM: 21 HP (15,5 kW),
- maximum torque at approximately 5200 RPM: 27,4 Nm,
- engine greasing with a mixture of oil and fuel in the ratio of 50:1,
- fuel consumption from 3 to 5,5 l of fuel per 100 km.

5.3. The Kawasaki ZR 800 motorcycle

Motorcycles of this type – presented in fig. 11-12 [1] – are used by military gendarmerie and other types of armies. The gendarmerie version is well equipped and has equipment for road traffic control. They are produced by Kawasaki. Their basic technical-exploitation parameters are as follows [1,12].

Engine and power train:

- engine type – liquid cooled, 4-stroke, 4-cylinder, straight,
- maximum power 113 HP at 10200 RPM (optionally 95 HP), compression ratio – 11,9:1,
- valve train/number of valves – DOHC, 16 valves,
- power – fuel injection: φ34 mm x 4, with two throttle valves,
- ignition – electronic with a microprocessor,
- starter – electric,
- greasing – forced circulation, wet oil pan,
- maximum torque 83 Nm at 8000 RPM (optionally 76 Nm),
- cylinder diameter x piston stroke 71,0x50,9mm,
- fuel tank capacity 28 liters.
Fig. 13. A general view of the motorcycle's equipment

Size and weight:
- length 2.1 m, width 0.8 m, height 1.05 m,
- wheelbase 1.44 m, saddle height 0.83 m, clearance 0.15 m,
- motorcycle weight when ready to drive 180/229 kg.

Chassis:
- front tire 120/70/17, rear tire 180/55/17,
- steel frame,
- front telescope USD suspension, diameter 44 mm, stroke 120 mm,
- rear suspension aluminum control arm, stroke 137 mm,
- front disk diameter 2x310mm, 4-piston clamps,
- back disk diameter 1x250mm, 1-piston clamp,
- maximum speed: over 200 km/h,
- fuel consumption: 5.9 l/100 km,
- left/right turn radius 310/310.

Power train:
- engine-clutch: gears 1,714,
- clutch: multidisc, wet,
- gearbox: 6-gears: 1:2,571; 2:1,941; 3:1,556; 4:1,333; 5:1,200; 6:1,095,
- rear wheel drive: chain, 3.00.

5.5. The WSK 125 motorcycle

Even though many years have passed, this type of motorcycle is still used in the army. These motorcycles were produced in the years 1954-1985 by the Wytwórnia Sprzętu Komunikacyjnego PS in Świdnik (fig. 13-14) [1,12].

The basic M06 model was produced (with amendments) up until the year 1985. The last WSK motorcycle was produced on 31 October 1985 and it was the last motorcycle produced in Poland. For the sake of comparison with the contemporary maintenance-repair system, the author presents the maintenance-repair system for the WSK motorcycle based on a factory repair manual [12,17].

When comparing table 4 with table 2 (the Aprilia Pegaso motorcycle maintenance), one may notice that the activities are more simple for the WSK motorcycle, and are mainly carried out directly by the users of this motorcycle; in a less mileage cycle and in a shorter exploitation period. This fact stems from the flow of time and the technical development in motorcycle construction, e.g. of equipment and electrical equipment, using a new generation of construction materials (this including composites) [14] and exploitation materials [11,12].

5.5.1. Everyday maintenance

The everyday maintenance during exploitation of the WSK motorcycle [5,12,13,15] includes such basic activities as [12,17]:
- checking if the brakes are working,
- checking if the clutch is working,
- checking if the electrical installation is working, with special attention to the stop light,
- checking the tire pressure.

An important maintenance activity, however not necessarily done before each drive, is washing the bodywork and cleaning the engine. This activity is important not only from aesthetical reasons, but also because it allows to notice loosened bolt connections. Moreover, one has to point out that a clean engine guarantees correct thermal conditions for its operation.

5.5.2. Periodic maintenance

Periodic technical maintenance [5,12,13,15] for WSK motorcycles is divided into groups (apart from the running-in period) of maintenance activities such as [12,17]:
- the group of activities which must be done after every 2500 km,
- the group of activities which must be done after every 5000 km,
- activities done once every 2 ... 4 weeks.

Fig. 14. An overall view (left side)

Fig. 15. An overall view (right side)
There are also other activities which are considered important periodic technical maintenance. Usually during the autumn period, such an activity would be the preparation of the motorcycle for a longer stand without being used. During the spring period, this would mean also preparing the motorcycle for exploitation after a longer period of inactivity. Apart from this, there are also all activities which must be done with a new motorcycle before the first drive. These are mainly activities connected with de-conservation of the motorcycle, checking and tightening the bolts, regulation etc. A detailed maintenance schedule along with the scope of activities has been prepared by the authors in MH form and is given in table 4 [12,17].

Basic technical specifications [12,17]:
- **engine** – two-stroke with rings, type S01-Z3A (051), air cooled, cylinder capacity: 123 cm³, cylinder diameter: 52 mm, piston stroke: 58 mm,
- **compression ratio**: 7:1, power – 7.3 HP (5.4 kW) at 5300 RPM, compression pressure 7.0 Kgf/cm²,
- maximum torque: 9.8 Nm at 4200 RPM,
- camshaft type symmetrical, piston edge, carburetor – G20M2A,
- fuel – a mixture of at least 78-octane (or more) fuel and Lux 10 oil (alternatively Mixol S) in a 1:30 ratio,
- fuel consumption – 2.6 l/100 km at 60 km/h, maximum speed approximately 80 km/h,
- ignition magneto, M14x1,25 spark plug with a heat value (225 Bosch – Iskra F80),
- AC generator – 6 V/28 W, selenium battery charger, two-disk, straightening one half of AC or silicon GB 0.15, 3MA3 battery, 6V/8Ah lead-acid,
- power train from engine crankshaft onto the clutch: bushing chain 9.525x7.5 with 44 links (3/8"x7.5 with 44 links), clutch: 3-disk, cork in oil bath,
- 3-gear gearbox with 3 shafts, permanently interlocked with the following gears: I gear – 2.93, II gear – 1.49, III gear – 1.0,
- rear tire drive: roll chain 1/2"x7.75, 118 chains, shift 3:1, frame: closed, single, welded from steel pipes and pressed girders,
- front suspension: telescopic with oil damping, stroke 150 mm, rear suspension: swingarm with spring elements with a stroke of 90 mm with an oil damper,
- brakes: drum with molded jaws, full hub with a diameter of 140 mm,
- tires: 3x18, wheels mutually interchangeable,
- tire pressure: front 0.8/1.3 Kgf/cm², rear solo 1.2/1.5 Kgf/cm², rear with passenger 1.5/1.9 Kgf/cm²,
- length/width/height: 2,020/70/1.0 m,
- saddle height: 0.76m, wheelbase: 1.33 m, minimal clearance: 1.6 m,
- weight without liquids: 98 kg, weight when ready for driving: 114 kg, gross vehicle weight: 270 kg,
- fuel tank – capacity: 10.5/12.5l,
- gearbox capacity: 0.5 l, oil Lux 10.

Table 4. Periodic maintenance activity schedule for WSK motorcycles

<table>
<thead>
<tr>
<th>No.</th>
<th>Motorcycle mileage in km (or period)</th>
<th>Type of maintenance</th>
<th>Scope of carried out activities</th>
<th>Technical-regulation parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Before the first drive</td>
<td></td>
<td>1. Allow the battery to be charged up for the first time. 2. Check the oil level in the gearbox. 3. De-conserv the motorcycle by washing the oily parts with petrol. 4. Checking, if necessary, adjusting the setting of the gear shift and starter. 5. Filling up the tank with a mixture of petrol and oil.</td>
<td>0.4-0.6 mm</td>
</tr>
<tr>
<td>2</td>
<td>500 and 1000 during the running-in period</td>
<td></td>
<td>1. Tighten the bolts and nuts. 2. Replace the oil in the gearbox (only after 500 km). 3. Check the chain tension. 4. Check the clutch lever and brake clearance. 5. Check spoke tightening.</td>
<td>0.2-0.3 mm</td>
</tr>
<tr>
<td>3</td>
<td>2500</td>
<td>OT-1</td>
<td>1. Clean the air filter and saturate it with a mixture of Mixol S oil and petrol in 1:1 ratio. 2. Saturate the felt tongue and breaker axes with 1...2 drops of Mixol S or Lux 10 oil. 3. Wash and grease the chain with graphite grease or saturate it with molen tallow with graphite. 4. Grease the brake pedal axis with LT-43 grease. 5. Check and, if necessary, refill the oil in the gearbox. 6. Check and, if necessary, adjust the clutch. 7. Check and, if necessary, adjust the brake. 8. Clean and, if necessary, adjust the space between the spark plug electrodes. 9. Clean the breaker jacks and, if necessary, adjust the space between them. 10. Clean and, if necessary, adjust the carburetor. 11. Clean the fuel filter and the clarifier in the fuel faucet. 12. Clean the residue from the stenicer. 13. Check and, if necessary, replenish the tire pressure. 14. Check the condition and location of the tire tube tap. 15. Check and tighten all bolts.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5000</td>
<td>OT-2</td>
<td>1. Carry out OT-1 activities (in the same way as after 2500 km). 2. Grease the clutch, accelerator and speedometer cords with Lux 10 or Mixol S oil. 3. Grease the cord ends and lever axes with LT-43 grease. 4. Grease and adjust the bearing tension in the frame head. 5. After dismantling the wheel, grease the expander and speedometer drive with LT-43 grease. 6. Grease the rear hub bearings, the expander and the bearing of the driver drum with LT-43 grease. 7. Grease the control arm axis with LT-43 grease. 8. Replace the oil in the gearbox. 9. Wash the front telescopes (in case of spotting leaks) and replace the Lux oil (with a fresh one). 10. Check and, if necessary, set the ignition retard angle. 11. Clean the fuel tank. 12. Check the electrical cord connections. 13. Check the wheel spoke tension steadiness. 14. Remove the residue from the piston bottom, head and the exhaust channels. 15. Clean and dry the muffler. 16. Check the clutch chain condition.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2...4 weeks</td>
<td></td>
<td>1. Carry out the battery maintenance.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Before a longer period without usage</td>
<td></td>
<td>1. Change the oil in the gearbox. 2. Wash the power system. 3. Maintain the crank unit by filling it with 30-40 cm⁢³ of oil into the spark plug hole and distribute it by turning the crankshaft. 4. Wash and grease the drive chain. 5. Change the battery and pour the electrolyte oil. 6. Thoroughly wash the entire motorcycle. 7. Preserve the varnished parts with silicone polishing milk. 8. Preserve the chromed parts with Vaseline or with oil. 9. Carry out the greasing of the motorcycle as per the instructions from OT-2 (after 5000 km mileage). 10. Decrease the tire pressure to 0.005 MPa and set the motorcycle on supports (on the frame).</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>After a longer period without usage</td>
<td></td>
<td>1. De-conserv the chromed parts. 2. Remove the oil from the crank unit. 3. Fill the battery with an electrolyte with a density of 1,24 g/cm³ and, after two hours, charge it in the same way as when the motorcycle was brand new. *</td>
<td></td>
</tr>
</tbody>
</table>

* during the running-in period, the manufacturer recommended using a mixture of fuel and oil in 1:20 ratio, and 1:30 in the period of normal exploitation.
** during exploitation in the summer season, the manufacturer recommended using M14x1,25 spark plugs with a heat value of 240 produced by Bosch or F 100 produced by the company Iskra.
- Mixol oil is still being produced.
6. Intervention motorcycle Yamaha FZ 6

Motorcycles of this type – fig. 15-16 [1,7,12] are used as intervention motorcycles by the Military Gendarmerie (Żandarmeria Wojskowa). They are produced by Yamaha. Their basic technical-exploitation specifications are as follows [1,12].

![Fig. 16. An overview](image1)

![Fig. 17. A rear side view](image2)

Basic technical specifications [1,12]:
- total length – 2,095 m, wheelbase – 1,44m,
- weight of vehicle ready for driving – 189,1 kg, number of seats – 2,
- maximum speed – 220 km/h,
- aluminum frame,

Engine:
- 2-cylinder, four-stroke with spark ignition, cylinder capacity – 600 cm³,
- maximum power – 98 HP(72 KW) at 12 000 RPM,
- maximum torque – 63,1 Nm at 10 000 RPM,
- average fuel consumption 4,9 l/100 km.

Drive unit:
- drive – chain, gearbox – manual, number of gears – 5,
- front tire: 120/70/ZR 17, rear: 180/55/ZR 17.

Additional equipment:
- unit steering signaling for an emergency vehicle along with warning lamps and sound signals,
- radiotelephone with a microphone and an antenna,
- Maintenance/technical inspections every 10000 km of mileage.

7. Rules of safe motorcycle exploitation

- having the appropriate permissions, this including a driver’s license for this category of vehicles,
- starting exploitation/driving must be preceded by training,
- checking the vehicle before every drive,
- the driver must have appropriate equipment: a helmet, goggles or protective shield, gloves, pads, appropriate shoes, clothing,
- adjusting the speed to the road conditions and your own skills,
- not carrying out dangerous maneuvers which may cause the motorcycle to overturn,
- mastering the technique of taking turns and the rules of driving e.g. on slippery roads and steep hills,
- mastering the technique of driving in various atmospheric-road conditions,
- not exceeding the speed limit,
- drying and maintenance of the vehicle’s units after rain, getting wet etc.,
- current wheel and tire maintenance, this including replenishing the correct pressure,
- timely execution of maintenance and inspections (also the seasonal ones),
- keeping the correct vehicle load and ensuring correct fastening and security of the carried loads and passengers.

8. Conclusions

This article presents the chosen technical aspects connected with the equipment group: motorcycles and their construction solutions, equipment and the rules of their exploitation within the army. Chosen types of motorcycles were presented and the authors have made reference to normative documents in effect prepared by technical and material services. An example of a maintenance-repair system for chosen types of motorcycles was also presented.

As one may notice, this generation of army equipment is quite diverse. Even though it is named motorcycle, it requires very good preparation or driving it, for example in changing and various weather conditions, which carries a lot of risk. Moreover, maintenance and repairs of this army equipment are quite complicated: in older motorcycles, these can be done by army workshops, however the newer ones require using civil services.

This equipment group is constantly developing in the construction-technical respect, e.g. by using modern construction materials, as well as being equipped and filled with electronics.

Bibliography

1. The authors’ own archives.
3. The decision no 384/MON of the Minister of National Defense from 25 September 2015 regarding defining the gestor function and the function of central logistics organs for army equipment in the department of national defense.
5. Tank-vehicle service equipment managing manual. DD/4.22.2.
7. Land Technology exploitation norm catalogue. DU-4.22.13.t.

Autorzy:
mgr inż. Dariusz WOŹNIK – Car Technology and Road Traffic Assessor Association in Warsaw, Koszalin Branch
mg inż. Katarzyna GOTOWA – Technical University of Koszalin
mgr Jacek WOŹNIK – University of Szczecin.

Motocykle - wybrane aspekty eksploatacji w wojsku

Słowa kluczowe: motocykle, konstrukcja, systemy obsługowo-naprawcze, normy eksploatacji.