Optimising the Production Process of Rieter Air Jet Spun Yarns and a Model for Prediction of their Strength

DOI: 10.5604/01.3001.0010.7794

Abstract
In this study, the effect of yarn linear density, delivery speed and nozzle pressure on Rieter air jet spun yarn strength was investigated. A multiple regression model was used to study the combined effect of these parameters and response surfaces were obtained. Results showed that by increasing the nozzle pressure, the yarn tensile strength improves till a specific limit, then it deteriorates afterwards. Based on the different combinations of processing variables, optimal running conditions were obtained. Along with the experiment, a mathematical model that predicts air jet spun yarn strength at a short gauge length has been presented. Fibre parameters in addition to yarn structural parameters were used to obtain the theoretical yarn strength. The results showed a satisfactory agreement between the experimental and theoretical results.

Key words: air jet spinning, linear density, strength, nozzle pressure, delivery speed, prediction, structure.

Moaz Eldeeb1,*
Ali Demir2

1Technical University of Liberec, Department of Textile Technology, Faculty of Textile Engineering, Liberec, Czech Republic
E-mail: eldeeb.moaaz@gmail.com
2Istanbul Technical University, Department of Textile Engineering, Faculty of Textile Technologies and Design, Istanbul, Turkey

Introduction
The air jet spinning process has just reached an industrial acceptance stage, having developed through almost half a century. Known as fascinated spinning, air jet spinning was first introduced by the DuPont Company in 1971 using the principle of air vortices to form a yarn, followed by Murata jet spinning “MJS” in 1982, which consists of two jets rotating in opposite directions. Murata later introduced an improved version of MJS called “MVS” – Murata Vortex Spinning in 1997. The MVS system uses a single nozzle with an inner needle, and this system is now able to produce 100% carded cotton yarns [1, 2].

In 2009, Rieter presented the latest method in air jet spun yarn production. Both the Rieter and MVS systems are based on a similar principle, but the nozzle block in the Rieter system does not contain a needle holder that works as a twisting guide [3]. In this system, as shown in Figure 1, the drafted fibre strand is fed to the vortex chamber, and the channel where the yarn is withdrawn from lies above the fibre feed channel. Therefore during the fibre transport process, some fibres are separated from the main stream, which is approximately straight from the drafting zone to the spindle tube entrance point. Due to the air vortices inside the spindle, these fibres are twisted to wrap around the main fibre strand which forms the yarn core, which is then taken up by the winding device [4]. The air jet spun yarn structure consists of core fibres, which are parallel and consolidating wrapper fibres that lie inclined to the yarn axis at differing angles.

Experimental investigations were carried out on the influence of air jet spinning machine production parameters on yarn properties in order to optimise yarn quality. These parameters are the nozzle (pressure and orifice angle), the distance between the spindle and front roller nip point, the draft, spindle (cross-section, working period and diameter), yarn (linear density and delivery speed) and fibre composition [5-9]. Most of these parameters proved to have a significant effect on final yarn properties. Coarser MVS yarns exhibit superior yarn properties in terms of yarn tenacity, and the nozzle pressure required is higher when spinning these yarns.

Earlier studies carried out on MVS yarn showed that tensile energy initially increases with an increase in nozzle pressure and then deteriorates with any further increase in nozzle pressure. The structural integrity, tensile properties, and abrasion resistance deteriorate at high yarn delivery speeds [10-14]. In this research, some parameters were investigated using this new Rieter air jet spinning technology, namely, yarn linear density, nozzle pressure, and delivery speed. These parameters were proven to influence the fibre configuration and yarn structure significantly. Although these parameters have been investigated, slight differences in nozzle design for both the Rieter and MVS systems may lead to a different trend. Therefore this study aimed to give a good understanding of this new technique.

Along with an experimental study, a mathematical model was established based on an earlier model available in
the literature that predicts air jet spun yarn strength. To achieve the best air jet yarn quality, this necessitates knowing the relationship between fibre properties, yarn structure and yarn properties, which can demonstrate which factor is more important. Furthermore it indicates the limits of each factor. Mathematical models are usually used to describe and explain such relationships. Numerous researchers have made a good contribution to this topic, many of whom presented mathematical models for ring-spun yarns [15-19] and rotor yarns [20]. Nevertheless mathematical models of air jet spun yarns are limited [21, 22]. Rajamanickam et al. presented mathematical models that predict air jet yarn strength. They also obtained a mathematical relationship between the yarn’s breaking load and its structure. The model also classified the modes of yarn failure into noncatastrophic (due to partial fibre slippage or breakage at the point of yarn failure) and catastrophic (due to complete fibre slippage or breakage at the point of yarn failure) [23, 24]. However, they obtained a prediction error which was quite high. In this article, their model has been modified to target better prediction accuracy.

Material and method

100% Viscose fibres (38 mm) were spun to produce air jet spun yarns. After the carding process, the sliver was drawn using three consecutive drawing passages in order to enhance fibre orientation and sliver evenness. The sliver of 3.5 ktx drawn was spun using a Rieter air jet machine J20 (Switzerland) to produce yarns with different counts and machine parameters. The Box- Behnken factorial experimental design is an efficient method to reduce the number of experiments required to study the parameters and their combined effect, and in our study it was used to obtain the combination of yarn count, delivery speed and nozzle pressure. Table 1 shows the parameters chosen and their values. It is notable to mention that spinning one sample with the level code (-1, 1, 0) was impractical because the end breakage rate was very high, which obstructed the spinning process. Therefore a total of 12 yarn samples were spun and tested.

The fibres used and yarns spun were conditioned for 24 hours at 20±2 °C and 65±2% relative humidity prior to testing. The fibre strength and fineness were measured using a Lenzing Vibrodyn-400 (Austria) according to ENISO1973. The fibre length distribution was obtained using a Sinus instrument according to ASTM D1447. SEM analysis was performed to analyse the yarn structure, where samples were coated by gold sputtering for 45s and analysed by means of a yarn longitudinal view using a Carl Zeiss Scanning Electron Microscope operated at a voltage of 2 kV. The yarn number of wraps per meter and average helix angle were measured. The yarn diameter was measured using an Uster tester according to ASTM1425 (Switzerland). Yarn strength was measured at a short gauge length (30 mm) using a Labortech instrument according (Czechia) to ASTM D2256. The ordinary least squares regression model was used to analyse the test results and obtain a regression Equation (1).

\[
y = \beta_0 + \beta_1X_1 + \beta_2X_2 + \beta_3X_3 + \beta_4X_4 + \beta_5X_5X_6 + \beta_6X_1X_2 + \beta_7X_1X_3 + \beta_8X_1X_4 + \beta_9X_2X_4 + \beta_{10}X_1^2 + \beta_{11}X_2^2 + \beta_{12}X_3^2 + \beta_{13}X_4^2 + \beta_{14}X_5^2 (1)
\]

![Simplified model of short staple air jet spun yarn.](image1)

![Schematic diagram of the yarn formation zone on a Rieter air jet spinning machine.](image2)

Table 1. Spun yarn production parameters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Level codes</th>
<th>-1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yarn count, tex</td>
<td></td>
<td>16</td>
<td>23</td>
<td>30</td>
</tr>
<tr>
<td>Delivery speed, m/min</td>
<td></td>
<td>350</td>
<td>400</td>
<td>450</td>
</tr>
<tr>
<td>Nozzle pressure, bar</td>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
Where \(Y \) is the dependent variable, \(X_{1}, X_{2}, X_{3} \) are the independent variables, \(\beta_{0}, \beta_{1}, \beta_{2} \) are the regression equation constant, \(\beta_{3}, \beta_{4}, \beta_{5} \) are the regression equation coefficients, \(\beta_{6}, \beta_{7}, \beta_{8} \) are the interaction coefficients, and \(\beta_{9}, \beta_{10}, \beta_{11} \) are the quadratic coefficients.

Derivation of mathematical model

In the current model, the air jet yarn structure has been divided into the core, which is almost parallel fibres, and wrapper, which is in a helical form. The core strand strength has been calculated as a parallel bundle of fibres. Therefore the frictional forces applied to the core fibres have been calculated in addition. The frictional forces are straight, parallel to the yarn axis, have equal circular diameters, no slippage occurring between core fibres due to the usage of short gauge length, inter-fibre friction so small that it can be ignored, and that the individual fibre position in the yarn is random, then using the Neckâ€™s theory of a parallel fibre bundle [25], the fibre length utilization factor \(\eta \) can be calculated using the following formula:

\[
\eta = \begin{cases}
(1 - \frac{h}{l})r_f & h < l_{\text{max}} \\
0 & h \geq l_{\text{max}}
\end{cases}
\]

Where, \(h \) denotes the gauge length, \(l \) the fibre length, and \(r_f \) is the mass fraction function, which is the summation of the partial mass fractions of each fibre in the yarn, and can be calculated by analysing the fibre length distribution graph using the following formula:

\[
\gamma(l) = \sum_{j=1}^{k} \frac{m_j}{m}
\]

Where, \(m \) is the mass of the \(j^{\text{th}} \) fibre and \(m \) is the mass of the yarn calculated at the maximum fibre length. The value of \(\gamma(l) \) ranges from 0 to 1. If all fibres in the yarn have the same length and are equal to the maximum fibre length, then \(\gamma(l) \) will be equal to 1 and the parallel bundle strength will be a function of the gauge length only. Thus the core fibre strength as a parallel bundle gripped between two jaws \(\sigma_c \) can be obtained using Equations (9) and (10) as follows,

\[
\sigma_c = \frac{100 - \gamma(l)}{100} \frac{T_f}{r_f} \eta
\]
Wrapper fibre strength component

The following assumptions were taken into consideration: (a) a uniform normal pressure exists on core fibres due to the wrapping effect; (b) the wrapping angle is constant, and (c) fibres break simultaneously due to extension at a gauge length less than the fibre length. It is possible to obtain the total wrapper fibre strength \(\sigma_w \) using the following relation [21].

\[
\sigma_w = \sigma_f \cos \alpha \frac{W T_y}{100 T_f} \tag{12}
\]

According to Equations (2-12), it is possible to obtain the yarn strength \(\sigma_y \) as follows:

\[
\sigma_y = \sigma_1 + \sigma_2 + \sigma_3 \tag{13}
\]

The yarn wrapper ratio \(W \) can be considered as the average volumetric ratio between wrapper fibres and yarn at different yarn sections; thus it can be obtained using the following formula,

\[
W = \frac{c(b^2-a^2)}{c(b^2-a^2) + a^2 d^2} \tag{14}
\]

Figure 4 shows a 30 tex yarn longitudinal view under SEM. Random yarn sections were analysed and parameters \(A, B, C \) and \(D \) obtained.

Results and discussion

Table 2 shows the fibre parameters that were obtained and used as an input for the calculation, while Table 3 shows the theoretical and experimental yarn strength values along with its corresponding structural parameters measured under SEM. Results show that the model proposed exhibits good agreement with experimental results of the yarn breaking load, where the prediction error varies from 2-13%. The higher values of prediction error could be ascribed to the variation in the values of wrapper fibre helix angle measured, in the wrapper fibre ratio, and in the number of wraps per unit length. The squared multiple regression coefficient \((R^2) \) along with the regression equations (response surface equations) were estimated for the experimental and theoretical yarn strength as shown in Table 4. All regression coefficients and their P-values are given Table 5.

Figure 4. 30 tex viscose yarn longitudinal view under SEM.

Table 2. Viscose fibre properties.

Fibre friction coefficient, \(-\)	0.35
Fibre breaking elongation, %	19.4
Fibre fineness, tex	0.13
Fibre breaking load, cN	3.28

Table 3. Theoretical and experimental yarn results. Note: * The values in brackets indicate the coefficient of variation (CV%) of the parameter measured.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Actual yarn count, tex</th>
<th>Wrapper fibre ratio, %</th>
<th>Yarn diameter, (\text{mm})</th>
<th>Average unstrained wrapper fibre helix angle, rad</th>
<th>Yarn wraps per meter</th>
<th>Predicted yarn breaking load, cN</th>
<th>Experimental yarn breaking load, cN</th>
<th>Prediction error, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.9</td>
<td>33.36 (19)</td>
<td>0.20</td>
<td>0.45 (23)</td>
<td>825</td>
<td>224.41</td>
<td>237.65</td>
<td>5.65</td>
</tr>
<tr>
<td>2</td>
<td>15.6</td>
<td>28.82 (42)</td>
<td>0.23</td>
<td>0.40 (31)</td>
<td>714</td>
<td>195.42</td>
<td>214.95</td>
<td>9.09</td>
</tr>
<tr>
<td>3</td>
<td>16.4</td>
<td>33.25 (18)</td>
<td>0.21</td>
<td>0.45 (19)</td>
<td>700</td>
<td>237.64</td>
<td>241.55</td>
<td>1.62</td>
</tr>
<tr>
<td>4</td>
<td>22.4</td>
<td>34.3 (21)</td>
<td>0.24</td>
<td>0.55 (13)</td>
<td>688</td>
<td>347.37</td>
<td>401.99</td>
<td>13.59</td>
</tr>
<tr>
<td>5</td>
<td>22.6</td>
<td>31.82 (27)</td>
<td>0.23</td>
<td>0.53 (18)</td>
<td>698</td>
<td>329.07</td>
<td>370.19</td>
<td>11.11</td>
</tr>
<tr>
<td>6</td>
<td>22.6</td>
<td>32.85 (28)</td>
<td>0.28</td>
<td>0.55 (13)</td>
<td>655</td>
<td>323.97</td>
<td>372.39</td>
<td>13.91</td>
</tr>
<tr>
<td>7</td>
<td>22.7</td>
<td>37.01 (20)</td>
<td>0.25</td>
<td>0.54 (16)</td>
<td>658</td>
<td>366.74</td>
<td>377.68</td>
<td>2.69</td>
</tr>
<tr>
<td>8</td>
<td>22.4</td>
<td>37.74 (15)</td>
<td>0.25</td>
<td>0.55 (15)</td>
<td>665</td>
<td>366.83</td>
<td>404.85</td>
<td>9.39</td>
</tr>
<tr>
<td>9</td>
<td>29.4</td>
<td>37.14 (18)</td>
<td>0.27</td>
<td>0.59 (17)</td>
<td>629</td>
<td>490.97</td>
<td>552.92</td>
<td>11.2</td>
</tr>
<tr>
<td>10</td>
<td>29.4</td>
<td>39.42 (9)</td>
<td>0.29</td>
<td>0.61 (18)</td>
<td>562</td>
<td>525.39</td>
<td>551.58</td>
<td>4.75</td>
</tr>
<tr>
<td>11</td>
<td>29.5</td>
<td>35.96 (18)</td>
<td>0.29</td>
<td>0.62 (19)</td>
<td>545</td>
<td>502.52</td>
<td>522.89</td>
<td>3.89</td>
</tr>
<tr>
<td>12</td>
<td>29.4</td>
<td>36.4 (21)</td>
<td>0.27</td>
<td>0.64 (10)</td>
<td>619</td>
<td>502.49</td>
<td>562.38</td>
<td>10.65</td>
</tr>
</tbody>
</table>

Table 4. Response surface equations for yarn properties tested. Note: \(X_1 \): yarn count, tex, \(X_2 \): yarn delivery speed, m/min, \(X_3 \): nozzle pressure, bar.

<table>
<thead>
<tr>
<th>Dependant variable</th>
<th>Response surface equation</th>
<th>(R^2), %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental strength, cN</td>
<td>(-821.9 + 22.4X_1 + 2.4X_2 + 94.4X_3 - 0.2X_3^2 - 0.01X_3^2 + 19.2X_2X_3 + 0.01X_3X_1 + 1.4X_3X_2 + 0.2X_2X_3)</td>
<td>95.5</td>
</tr>
<tr>
<td>Theoretical strength, cN</td>
<td>(-569.5 + 8.3X_2 + 1.8X_3 + 81.9X_1 + 0.07X_1^2 - 0.005X_2^2 - 17.4X_1X_2 + 0.04X_1X_3 + 0.9X_3X_2 + 0.3X_2X_3)</td>
<td>98</td>
</tr>
</tbody>
</table>

Table 5. P-values of the experimental strength model and its coefficients. Note: *Statistically significant at 95% confidence level.

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>(\beta_1)</th>
<th>(\beta_2)</th>
<th>(\beta_3)</th>
<th>(\beta_4)</th>
<th>(\beta_5)</th>
<th>(\beta_6)</th>
<th>(\beta_7)</th>
<th>(\beta_8)</th>
<th>(\beta_9)</th>
<th>(\beta_{10})</th>
<th>Regression model F, P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-value</td>
<td>0.01*</td>
<td>0.00*</td>
<td>0.00*</td>
<td>0.02*</td>
<td>0.01*</td>
<td>0.04*</td>
<td>0.00*</td>
<td>0.00*</td>
<td>0.00*</td>
<td>0.03*</td>
<td>0.02*</td>
</tr>
</tbody>
</table>
Figures 5 shows the influence of the linear density, delivery speed and nozzle pressure on yarn strength. The analysis of variance showed that the differences in yarn strength are statistically significant at a 95% confidence level. It is obvious that the linear density has the maximum effect on yarn strength. As shown in Figures 5.a, 5.b, coarser yarns of 30 tex have higher strength than finer yarns of 16 tex, due to the increase in the number of fibres in the yarn cross-section, thus the existence of a higher proportion of core fibres that bear the load exerted on the yarn. The same trend also exists in MVS yarn [10].

Figure 5.c shows that increasing the yarn delivery speed from 350 to 400 m/min results in increasing the yarn strength, particularly at 6 bar, but when using a high delivery speed of 450 m/min, a deterioration in yarn strength of about 7% occurs, which is a consequence of the insufficient time for the whirling action to take place in the vortex chamber, resulting in an increment in the number of wild fibres and regions of unwrapped core fibres [26]. Also from Figure 5.c, it is observed that the yarn strength increases when the nozzle pressure increases from 4 to 5 bar, and then decreases gradually when it reaches 6 bar, because the rise in air pressure initially causes tight regular wrappings and more wrapped portions of the yarn; but higher air pressure creates irregular wrappings and increases the wild fibres. The same trend is also confirmed for MVS yarn [10]. However, it should be noted that unlike fine yarns, when using the high pressure of 6 bar, the strength of coarse yarns did not change (Figure 5.b). By observing the trend of the theoretical and experimental values of yarn strength in Figure 5, it can be concluded that the mathematical model captures the change in yarn strength well as the yarn linear density, delivery speed and nozzle pressure change.

Conclusions
This study focuses on the effect of yarn count, nozzle pressure and delivery speed on Rieter air jet spun yarn strength. It is clear that coarser counts have a higher tensile strength. Increasing the nozzle pressure results in increasing tight regular wrappings and more wrapped portions, and consequently the yarn strength increases initially, but later on it decreases at higher pressures because of the incidence of irregular wrappings, and an increase in wild fibres and fibre loss. Using high delivery speeds deteriorates the yarn tensile strength because of the insufficient time for the whirling action to take place in the vortex chamber, which results in an increment in the number of wild fibres as well as the regions of unwrapped core fibres. Response surface equations showed that the yarn count range taken (16-30 tex) has the maximum effect on yarn tensile strength. Moreover maximum tensile strength values (greater than 522 N) are obtained at coarser counts (30 tex). For seeking the optimal machine setting it is suggested to adjust the delivery speed within the range of 350 to 400 m/min and nozzle pressure to 5 bar for the whole range of yarn linear density. These settings are similar to the optimal running conditions of the MVS to a great extent. The general trend of the influence of the parameters studied on the Rieter air jet yarn strength was found to be similar to its corresponding MVS yarn.
Based on fibre parameters and air jet spun yarn structural parameters, it is possible to predict the air jet yarn strength at a short gauge length using the model presented in this article. The model calculated three components of strength: the core strength as a parallel bundle of fibres, the wrapper fibre pressure on core fibres, and the wrapper fibre strength. The model may be developed to calculate the yarn strength at a longer gauge length (500 mm).

References

5. Erdumlu N, Ozipek B. Effect of the draft ratio on the properties of vortex spun yarn. FIBRES & TEXTILES in Eastern Europe 2010; 80, 3: 38-42.