Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 43, nr 3 | 93--112
Tytuł artykułu

Adsorption kinetics of fluoride on bone char and its regeneration

Treść / Zawartość
Warianty tytułu
Języki publikacji
The adsorbent of bone char (BC), produced from the pyrolysis of crushed animal bones, was dominated by the mesopores of the Brunauer Emmett Teller (BET) surface area. The optimal condition for defluoridation with BC was a pH level near 5.0. Chloride and nitrate ions could increase fluoride adsorption capacity in contrast with the effect of sulfate and carbonate ions. The interchangeability between fluoride and hydroxyl groups on BC sorbent was proved by the Fourier transform infrared spectroscopy. Langmuir equation had a better correlation coefficient than the Freundlich equation at various temperatures. Thermodynamic parameters such as Delta G degrees, Delta H degrees, Delta S degrees, Ea and S*, have been calculated to describe the nature of fluoride adsorption onto BC. Negative Delta G degrees and Delta H degrees values at various temperatures indicate a spontaneous process, and its exothermic effect, respectively. However, a positive Delta S degrees value represents an increasing process for entropy. The E-a and S* values ranging from 5 to 40 kj.mol-1 and 0 to 1, respectively, demonstrated that the adsorption is dominated by physical process, although the adsorption kinetic process was involved external diffusion, intraparticle diffusion and chemical reaction equilibrium stage. A high concentration of NaOH solution increases efficiency of removing adsorbed F- ions from the BC surface.

Opis fizyczny
Bibliogr. 28 poz., tab., rys.
  • School of Resources Environmental and Chemical Engineering, NanChang University, Jiangxi Nanchang, 330031, China
  • College of Ecology and Resource Engineering, WuYi University, Fujian Wuyishan, 354300, China
  • School of Resources Environmental and Chemical Engineering, NanChang University, Jiangxi Nanchang, 330031, China
  • College of Ecology and Resource Engineering, WuYi University, Fujian Wuyishan, 354300, China
  • College of Ecology and Resource Engineering, WuYi University, Fujian Wuyishan, 354300, China
  • Graduate Institute of Environmental Management, Tajen University, Pingtung, Taiwan,
  • [1] MAITI A., BASU J.K., DE S., Chemical treated laterite as promisingfluoride adsorbent for aqueous system and kinetic modeling, Desalin., 2011, 265, 28.
  • [2] KAMBLE S.P., Defluoridation of drinking water using chemically modified bentonite clay, Desalin., 2009, 249, 687.
  • [3] MOURABET M., RHILASSI A.E., BENNANI-ZIATNI M., EL HAMRI R., TAITAI A., Studies on fluoride adsorption by apatitic tricalcium phosphate (ATCP) from aqueous solution, Desalin. Water Treat., 2013, 51, 34.
  • [4] LIU H., DENG S.B., LI Z.J., YU G., HUANG J., Preparation of Al-Ce hybrid adsorbent and its application for defluoridation of drinking water, J. Hazard. Mater., 2010, 179, 424.
  • [5] ZHANG T., LI Q., XIAO H., MEI Z., LU H., ZHOU Y., Enhanced fluoride removal from water by nonthermal plasma modified CeO2/Mg–Fe layered double hydroxides, Appl. Clay Sci., 2013, 72, 117.
  • [6] CHEN H., YAN M., YANG X., CHEN Z., WANG G., SCHMIDT-VOGT D., XU Y., XU J., Spatial distribution and temporal variation of high fluoride contents in groundwater and prevalence of fluorosis in humans in Yuanmou County, Southwest China, J. Hazard. Mater., 2012, 235–236, 201.
  • [7] LV L., HE J., WEI M., EVANS D.G., ZHOU Z.L., Treatment of high fluoride concentration water by MgAl-CO3 layered double hydroxides. Kinetic and equilibrium studies, Water Res., 2007, 41, 1534.
  • [8] LOGANANATHAN P., VIGNESWARAN S., KANDASAMY J., NAIDU R., Defluoridation of drinking water using adsorption processes, J. Hazard. Mater., 2013, 248–249, 1.
  • [9] GAO S., CUI J., WEI Z., Study on the fluoride adsorption of various apatite materials in aqueous solution, J. Fluor. Chem., 2009, 130 (11), 1035.
  • [10] SMICIKLAS I., DIMOVIC S., SLJIVIC M., PLECAS I., The batch study of Sr2+ sorption by bone char, J. Environ. Sci. Health A, 2008, 43 (2), 210.
  • [11] CHEUNG C.W., CHAN C.K., PORTER J., MCKAY F.G., Combined Diffusion Model for the Sorption of Cadmium, Copper, and Zinc Ions onto Bone Char, Environ. Sci. Technol., 2001, 35 (7), 1511.
  • [12] KO D.C.K., CHEUNG C.W., CHOY K.K.H., PORTER J.F., MCKAY G., Sorption equilibria of metal ions on bone char, Chemosphere, 2004, 54 (3), 273.
  • [13] CHEUNG C.W., PORTER J.F., MCKAY G., Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char, Water Res., 2001, 35 (3), 605.
  • [14] MEDELLIN-CASTILLO N.A., LEYVA-RAMOS R., OCAMPO-PEREZ R., GARCIA R.F., ARAGON-PIRIA A., MARTINEZ-ROSALES J.M., GUERRERO-CORONADO R., FUENTES-RUBIO M.L., Adsorption of fluoride from water solution on bone char, Ind. Eng. Chem. Res., 2007, 46 (26), 9205.
  • [15] MA Y., SHI F., ZHENG X., MA J., GAO C., Removal of fluoride from aqueous solution using granular acid-treated bentonite (GHB). Batch and column studies, J. Hazard. Mater., 2011, 185 (2–3), 1073.
  • [16] GAO S., SUN R., WEI Z.G., ZHAO H., LI H., HU F., Size-dependent defluoridation properties of synthetic hydroxyapatite, J. Fluor. Chem., 2009, 130, 550.
  • [17] TOR A., DANAOGLU N., ARSLAN G., CENGELOGLU Y., Removal of fluoride from water by using granular red mud. Batch and column studies, J. Hazard. Mater., 2009, 164 (1), 271.
  • [18] KAMBLE S.P., DESHPANDE G., BARVE P.P., RAYALU S., LABHSETWAR N.K., MALYSHEW A., KULKAMI B.D.,Adsorption of fluoride from aqueous solution by alumina of alkoxide nature. Batch and continuous operation, Desalin., 2010, 264 (1–2), 15.
  • [19] ONYANGO M.S., KOJIMA Y., KUMAR A., KUCHAR D., KUBOTA M., MATSUDA H., Uptake of fluoride by Al3+ pretreated low-silica synthetic zeolites: adsorption equilibrium and rate studies, Sep. Sci. Technol., 2006, 41 (4), 683.
  • [20] ESKANDARPOUR A., ONYANGO M.S., OCHIENG A., ASAI S., Removal of fluoride ions from aqueous solution at low pH using schwertmannite, J. Hazard. Mater., 2008, 152 (2), 571.
  • [21] AOBA T., The effect of fluoride on apatite structure and growth, Crit. Rev. Oral Biol. Med., 1997, 8 (2), 136.
  • [22] POINERNA G.E.J., GHOSH M.K., NG Y.J., ISSA T.B., ANAND S., SINGH P., Defluoridation behavior of nanostructured hydroxyapatite synthesized through an ultrasonic and microwave combined technique, J. Hazard. Mater., 2011, 185 (1), 29.
  • [23] ROJAS-MAYORGA C.K., BONILLA-PETRICIOLET A., AGUAYO-VILLARREAL I.A., HERNANDEZ-MONTOYA V., MORENO-VIRGEN M.R., MONTES-MORAN M.A., Optimization of pyrolysis conditions and adsorption properties of bone char for fluoride removal from water, J. Anal. Appl. Pyrol., 2013, 104, 10.
  • [24] WANG G., LIU H., LIU J., QIAO S., LU G.M., MUNROE P., AHN H., Mesoporous LiFePO4/C Nanocomposite Cathode Materials for High Power Lithium Ion Batteries with Superior Performance, Adv. Mater., 2010,22 (44), 4944.
  • [25] YOUNESI M., JAVADPOUR S., BAHROLOLOOM M.E., Effect of heat treatment temperature on chemical compositions of extracted hydroxyapatite from bovine bone ash, J. Mater. Eng. Perform., 2011, 20 (8), 1484.
  • [26] MEENAKSHI S., VISWANATHAN N., Identification of selective ion-exchange resin for fluoride sorption, J. Coll. Interf. Sci., 2007, 308 (2), 438.
  • [27] NOLLET H., ROELS M., LUTGEN P., VANDER M.P., VERSTRAETE W., Removal of PCBs from wastewater using fly ash, Chemosphere, 2003, 53 (6), 655.
  • [28] MANDAL S., MAYADEVI S., Defluoridation of water using as-synthesized Zn/Al/Cl anionic clay adsorbent: Equilibrium and regeneration studies, J. Hazard. Mater., 2009, 167 (1–3), 873.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.