Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 67, no. 2 | 207--238
Tytuł artykułu

Accuracy of Precise Point Positioning (PPP) with the use of different International GNSS Service (IGS) products and stochastic modelling

Treść / Zawartość
Warianty tytułu
Języki publikacji
This paper provides analyses of the accuracy and convergence time of the PPP method using GPS systems and different IGS products. The official IGS products: Final, Rapid and Ultra Rapid as well as MGEX products calculated by the CODE analysis centres were used. In addition, calculations with weighting function of the observations were carried out, depending on the elevation angle. The best results were obtained for CODE products, with a 5-minute interval precision ephemeris and precise corrections to satellite clocks with a 30-second interval. For these calculations the accuracy of position determination was at the level of 3 cm with a convergence time of 44 min. Final and Rapid products, which were orbit with a 15-minute interval and clock with a 5 minute interval, gave very similar results. The same level of accuracy was obtained for calculations with CODE products, for which both precise ephemeris and precise corrections to satellite clocks with the interval of 5 minutes. For these calculations, the accuracy was 4 cm with the convergence time of 70 min. The worst accuracy was obtained for calculations with Ultra-rapid products, with an interval of 15 minutes. For these calculations, the accuracy was 10 cm with a convergence time of 120 min. The use of the weighting function improved the accuracy of position determination in each case, except for calculations with Ultra-rapid products. The use of this function slightly increased the convergence time, in addition to the CODE calculation, which was reduced to 9 min.

Opis fizyczny
Bibliogr. 54 poz., rys., tab., wykr.
  • Military University of Technology, Faculty of Civil Engineering and Geodesy 2 Gen. W. Urbanowicza St. 00-908 Warsaw, Poland,
  • Military University of Technology, Faculty of Civil Engineering and Geodesy 2 Gen. W. Urbanowicza St. 00-908 Warsaw, Poland,
  • [1] Afifi, A. and El-Rabbany, A. (2016). Improved Between-Satellite Single-Difference Precise Point Positioning Model Using Triple GNSS Constellations: GPS, Galileo, and BeiDou. Positioning, 7, 63–74. DOI: 10.4236/pos.2016.72006.
  • [2] Ahmed, F., Václavovic, P., Teferle, F.N., Dousa, J., Bingley, R.M. and Laurichesse, D. (2016). Comparative analysis of real-time precise point positioning zenith total delay estimates. GPS Solutions, 20(2), 187–199. ISSN 1521-1886.
  • [3] Banville, S., Sieradzki, R., Hoque, M., Wezka, K. and Hadas, T. (2017). On the estimation of higher-order ionospheric effects in precise point positioning. GPS Solut., 1–12. DOI: 10.1007/s10291-017-0655-0.
  • [4] Bałdysz, Z., Nykiel, G., Figurski, M. and Araszkiewicz, A. (2108). Assessment of the Impact of GNSS Processing Strategies on the Long-Term Parameters of 20 Years IWV Time Series. Remote Sens., 10, 496.
  • [5] Cai, C. et al. (2015). Precise point positioning with quad-constellations: GPS, BeiDou, GLONASS and Galileo. Adv. Space Res. DOI: 10.1016/j.asr.2015.04.001.
  • [6] Collins, P., Bisnath, S., Lahaye, F. and Heroux, P. (2010). Undifferenced GPS Ambiguity Resolution Using the Decoupled Clock Model and Ambiguity Datum Fixing. Journal of Navigation, 57(2), 123–135.
  • [7] Cerretto, G., Tavella, P., Lahaye, F., Mireault, Y. and Rovera, D. (2012). Near realtime comparison and monitoring of time scales with Precise Point Positioning using NRCan Ultra-Rapid Products. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 59(3), 545–551.
  • [8] Dousa, J. (2001). The Impact of Ultra-Rapid Orbits on PrecipitableWater Vapor Estimation using Grodnu GPS Network. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(6-8), 393–398.
  • [9] Dousa, J. and Vaclavovic, P. (2014). Real-time zenith tropospheric delays in support of numerical weather prediction applications. Adv Space Res, 53(9), 1347–1358. DOI: 10.1016/j.asr.2014.02.021.
  • [10] Elsobeiey, M. and El-Rabbany, A. (2013). An Efficient Precise Point Positioning Model for Near Real-Time Applications. Proceedings of the 2013 International Technical Meeting of The Institute of Navigation, San Diego, California, January 2013, pp. 318–324.
  • [11] Elsobeiey, M. and El-Rabbany, A. (2014). Efficient Between-Satellite Single-Difference Precise Point Positioning Model. Journal of Surveying Engineering, 140(2), 04014007. DOI: 10.1061/(ASCE)SU. 1943-5428.0000125.
  • [12] Gao, C., Wu, F., Chen, W. and Wang, W. (2011). An improved weight stochastic model in GPS Precise Point Positioning. Proceedings of the 2011 International Conference On Transportation, Mechanical, and Electrical Engineering (TMEE), Changchun, China, 16–18 December 2011.
  • [13] Ge, M., Gendt, G., Rothacher, M., Shi, C. and Liu, J. (2008). Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations. J. Geod. DOI: 10.1007/00190-007-0187-4.
  • [14] Ge, Y., Zhou, F., Sun, B., Wang, S. and Shi, B. (2017). The Impact of Satellite Time Group Delay and Inter-Frequency Differential Code Bias Corrections on Multi-GNSS Combined Positioning. Sensors (Basel, Switzerland), 17(3), 602. DOI: 10.3390/s17030602.
  • [15] Geng, J., Bock, D., Melgar, B., Crowell, W. and Haase, J.S. (2013). A new seismogeodetic approach applied to GPS and accelerometer observations of the 2012 Brawley seismic swarm: Implications for earthquake early warning. Geochem. Geophys. Geosyst., 14, 2124–2142. DOI: 10.1002/ggge.20144.
  • [16] Gołaszewski, P., Wielgosz, P. and St˛epniak, K. (2017). Intercomparison and validation of GNSS-IWV derived with G-Nut and Bernese software. Proceeding paper: The 10th International Conference “Environmental Engineering”, 27-28 April 2017, Vilnius, Lithuania.
  • [17] Grejner-Brzezinska, D.A., Kashani, I. and Wielgosz, P. (2005). On accuracy and reliability of instantaneous network RTK as a function of network geometry, station separation, and data processing strategy. GPS Solut, 9, 212–225.
  • [18] Guo, F., Zhang, X., Li, X. and Cai, S. (2010). Impact of sampling rate of IGS satellite clock on precisepoint positioning. Geo-spat. Inf. Sci., 13(2), 150–156. DOI: 10.1007/s11806-010-0226-9.
  • [19] Hada´s, T., Kaplon, J., Bosy, J., Sierny, J. and Wilgan, K. (2103). Near-real-time regional troposphere models for the GNSS precise point positioning technique. Meas. Sci Technol.
  • [20] Han S. (1997). Quality Control Issues Relating to Instantaneous Ambiguity Resolution for Real-time GPS Kinematics Positioning. Journal of Geodesy, 71, 351–361. DOI: 10.1007/s001900050103.
  • [21] Hesselbarth, A. and Wanninger, L. (2008). Short-term stability of GNSS satellite clocks and its effects on Precise Point Positioning. Proc. ION GNSS, Savannah, Georgia, 16-19 September, 1855–1863.
  • [22] Hoechner, A., Ge, M., Babeyko, A.Y. and Sobolev, S.V. (2013). Instant tsunami early warning based on real-time GPS-Tohoku 2011 case study. Nat. Hazards Earth Syst. Sci, 13, 1285–1292. DOI: 10.5194/nhess-13-1285-2013.
  • [23] Hofmann-Wellenhof, B., H. Lichtenegger and Wasle, E. (2008). GNSS-Global Navigation Satellite System. GPS, GLONASS, Galileo and more. Springer, New York.
  • [24] Kalita, J. (2017). Analysis of factors that influence the quality of Precise Point Positioning method. PhD Thesis. University of Warmia and Mazury in Olsztyn.
  • [25] Kazmierski, K., Hadas, T. and So´snica, K. (2018). Weighting of Multi-GNSS Observations in Real-Time Precise Point Positioning. Remote Sens., 10(1), 84. DOI: 10.3390/rs10010084.
  • [26] Khodabandeh, A. and Teunissen, P.J.G. (2015). An analytical study of PPP-RTK corrections: precision, correlation and user-impact. Journal of Geodesy 89(11), 1–24. DOI: 10.1007/s00190- 015-0838-9.
  • [27] Kouba, J. and Heroux, P. (2001). GPS Precise Point Positioning Using IGS Orbit Products. Solutions, 5(2), 12–28.
  • [28] Kouba, J. (2015). A guide to using international GNSS service (IGS) products, September 2015 update.
  • [29] Kouba, J., Lahaye, F. and Tétreault, P. (2017). Precise Point Positioning. Springer Handbook of Global Navigation Satellite Systems. Springer Handbooks, Springer, Cham.
  • [30] Kostelecky, J., Dousa, J., Kostelecky, J. (jr) and Vaclavovic, P. (2015). Analysis of the time series of stadion coordinates – a comparison of the network and PPP approach. Acta Geodyn. Geomater., Vol. 12, No 2(178), 127–133. DOI: 10.13168/AGG.2015.0019.
  • [31] Krzan, G. and St˛epniak, K. (2017). Application of the undifferenced GNSS precise positioning in determining coordinates in national reference frames. Artificial Satellites, 52(3), 49–69.
  • [32] Li, X., Ge, M., Lu, C., Zhang, Y., Wang, R., Wickert, J. and Schuh, H. (2014a). High-rate GPS seismology using real-time precise point positioning with ambiguity resolution. IEEE Transactions on Geoscience and Remote Sensing, 52(10), 6165–6180. DOI: 10.1109/TGRS.2013.2295373.
  • [33] Li, X., Dick, G., Ge, M., Heise, S., Wickert, J. and Bender, M. (2014b). Real-time GPS sensing of atmospheric water vapor: Precise point positioning with orbit, clock, and phase delay corrections. Geophys. Res. Lett., 41, 3615–3621. DOI: 10.1002/2013GL058721.
  • [34] Li, X., Ge, M., Dai, X., Ren, X., Fritsche, M.,Wickert, J. and Schuh, H. (2015). Accuracy and reliability of multiGNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. J. Geod., 89(6), 607–635.
  • [35] Liu Z, Li, Y., Jinyun, G. and Li, Fei. (2016). Influence of higher-order ionospheric delay correction on GPS precise orbit determination and precise positioning. Geodesy and Geodynamics, 7, 369–376. DOI: 10.1016/j.geog.2016.06.005.
  • [36] Liu, T., Yuan, Y., Zhang, B.,Wang, N., Tan, B. and Chen, Y. (2017). Multi-GNSS precise point positioning (MGPPP) using raw observations. J. Geod., 91, 253–268.
  • [37] Lou, Y., Zhang, W., Wang, C., Yao, X., Shi, C. and Liu J. (2014). The impact of orbital errors on the estimation of satellite clock errors and PPP. Adv Space Res, 54(8), 1571–1580.
  • [38] Nistor, S. and Buda, A.S. (2016). High rate 30 seconds vs clock interpolation in precise point positioning (PPP). Geodetski vestnik, 60(3), 483–494. DOI: 10.15292/geodetski-vestnik.2016.03.483-494.
  • [39] Nykiel, G. and Figurski, M. (2016). Precise Point Positioning Method Based on Wide-lane and Narrowlane Phase Observation and Between Satellites Single Differencing. Proceedings of the 2016 International Technical Meeting, ION ITM 2016, Monterey, California, January 25-28, 2016.
  • [40] Paziewski, J. and Wielgosz, P. (2017). Investigation of some selected strategies for multi-GNSS instantaneous RTK positioning. Advances in Space Research, 59(1), 12–23. DOI: 10.1016/j.asr.2016.08.034.
  • [41] Prochniewicz, D., Szpunar, R. and Walo, J. (2016). A new study of describing the reliability of GNSS Network RTK positioning with the use of quality indicators. Meas. Sci. Technol., 28.
  • [42] Rabbou, M.A. and El-Rabbany, A. (2015). PPP accuracy enhancement using GPS/GLONASS observations in kinematic mode. Positioning, 6(1), 1–6. DOI: 10.4236/pos.2015.61001.
  • [43] Rabbou, M.A. and El-Rabbany A. (2016). Performance analysis of precise point positioning using multi-constellation GNSS: GPS, GLONASS, Galileo and BeiDou. Survey Review. DOI: 10.1080/00396265.2015.1108068.
  • [44] Rothacher, M., Springer, T. A., Schaer, S. and Beutler, G. (1998). Processing strategies for regional GPS networks. In: Brunner, F.K., editor, Advances in Positioning and Reference Frames, volume 118 of International Association of Geodesy Symposia, pages 93–100. Springer Berlin Heidelberg, 1998. DOI: 10.1007/978-3-662-03714-0_14.
  • [45] RTCA-MOPS. (2006). Minimum Operational Performance Standards for Global Positioning System/Wide Area Augmentation System Airborne Equipment.rtca document 229-C.
  • [46] Sanz Subirana J., Juan Zornoza J.M. and Hernández-Pajares M. (2013). GNSS Data Processing, Vol. 1: Fundamentals and Algorithms, ESA TM-23/1, May 2013.
  • [47] Shi, J., and Gao, Y. (2009). Assimilation of GPS Radio Occultation Observations with a Near Real-Time GPS PPP-InferredWater Vapor System. Proceedings of the 22nd International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2009), Savannah, GA, September 2009, pp. 2584–2590.
  • [48] Tegedor, J, Ovstedal, O. and Vigen, E. (2014). Precise orbit determination and point positioning using GPS, Glonass, Galileo and BeiDou. Journal of Geodetic Science, 4(1), 2081–9943, DOI: 10.2478/jogs-2014-0008.
  • [49] Teunissen, P.J.D., Odijk, D. and Zhang, B. (2010). PPP-RTK: results of CORS network-based PPP with integer ambiguity resolution. J. Aeronaut., 42(4), 223–229.
  • [50] Tsai, M.L., Chiang, K.W., Lo, C.F. and Ch, C.H. (2013). The Performance Analysis of a Uav Based Mobile Mapping System Platform. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W2, 407–411.
  • [51] Wang, L., Li, Z., Ge, M., Neitzel, F., Wang, Z. and Yuan, H. (2108). Validation and Assessment of Multi-GNSS Real-Time Precise Point Positioning in Simulated Kinematic Mode Using IGS Real-Time Service. Remote Sens., 10, 337.
  • [52] Witchayangkoon, B. (2002). Elements of GPS Precise Point Positioning. M.Sc.Thesis, the University of Maine December.
  • [53] Yu, X. and Gao, J. (2017). Kinematic Precise Point Positioning Using Multi-Constellation Global Navigation Satellite System (GNSS) Observations. ISPRS Int. J. Geo-Inf., 6, 6.
  • [54] Zumberge, J.F., Helfin, M.B., Jefferson, D.C., Watkins, M.M. and Webb, F.H. (1997). Precise Point Processing for the Efficient and Robust Analysis of GPS Data from Large Networks. Journal of Geophysical Research, 102(B3), 5005–5017.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.