PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 68, nr 3 | 521--533
Tytuł artykułu

Influence of multi-tine electrode configuration in realistic hepatic RF ablative heating

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Percutaneous RF ablation is one of alternative treatment for non-surgical liver tumors. Ablative changes in hepatic tissue can be successfully estimated using the finite element method. The authors created a 3D model of a multi-tine applicator immersed in liver tissue, and then determined the optimal values of voltage applied to such an RF electrode, which do not exceed the therapeutic temperature range valid during thermal ablation procedure. Importantly, the simulations were carried out for the RF electric probes with 2 to 5 evenly spaced arms. Additionally, the thermal damage of hepatic tissue for multi-armed applicators working at pre-defined limit values of voltages was established based on the Arrhenius model.
Wydawca

Rocznik
Strony
521--533
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wz.
Twórcy
autor
  • AGH University of Science and Technology Department of Electrical and Power Engineering al. Mickiewicza 30, 30-059 Krakow, Poland, piotr.gas@agh.edu.pl
  • Nicolaus Copernicus University Faculty of Biology and Environmental Protection Lwowska 1, 87-100 Torun, Poland, joanna.wyszkowska@umk.pl
Bibliografia
  • [1] Vogl T.J., Nour-Eldin N.A., Hammerstingl R.M., Panahi B., Naguib N.N.N., Microwave Ablation (MWA): Basics, Technique and Results in Primary and Metastatic Liver Neoplasms–Review Article, RoFo – Fortschritte auf dem Gebiet der Rontgenstrahlen und der Bildgebenden Verfahren, vol. 189, no. 11, pp. 1055–1066 (2017).
  • [2] Tungjitkusolmun S., Staelin S.T., Haemmerich D., Jang-Zern Tsai, Hong Cao, Webster J.G., Lee F.T., Mahvi D.M., Vorperian V.R., Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation, IEEE Transactions on Biomedical Engineering, vol. 49, no. 1, pp. 3–9 (2002).
  • [3] Cala P., Bienkowski P., The concept and design of an interstitial microwave hyperthermia antenna with directional radiation characteristics, Przeglad Elektrotechniczny, vol. 94, no. 1, pp. 9–12 (2018).
  • [4] Al-Alem I., Pillai K., Akhter J., Chua T.C., Morris D.L., Heat sink phenomenon of bipolar and monopolar radiofrequency ablation observed using polypropylene tubes for vessel simulation, Surgical Innovation, vol. 21, pp. 269–276 (2014).
  • [5] Gas P., Kurgan E., Evaluation of thermal damage of hepatic tissue during thermotherapy based on the Arrhenius model, 2018 Progress in Applied Electrical Engineering (PAEE), IEEE Xplore, pp. 1–4 (2018), DOI: 10.1109/PAEE.2018.8441065.
  • [6] Antunes C.L., Almeida T., Raposeiro N., Producing a Regular Thermal Lesion Volume on a Cholangiocarcinoma Considering a Saline-Enhanced RF Ablation, Przeglad Elektrotechniczny, vol. 88, no. 7b, pp. 24–27 (2012).
  • [7] Paruch M., Turchan Ł., Mathematical modelling of the destruction degree of cancer under the influence of a RF hyperthermia, AIP Conference Proceedings, vol. 1922, no. 1, art. 060003, pp. 1–10 (2018), DOI: 10.1063/1.5019064.
  • [8] Gas P., Miaskowski A., SAR optimization for multi-dipole antenna array with regard to local hyperthermia, Przeglad Elektrotechniczny, vol. 95, no. 1, pp. 17–20 (2019), DOI: 10.15199/48.2019.01.05.
  • [9] Ge M., Jiang H., Huang X., Zhou Y., Zhi D., Zhao G., Chen Y., Wang L., Qiu B., A multi-slot coaxial microwave antenna for liver tumor ablation, Physics in Medicine and Biology, vol. 63, no. 17, art. 175011, pp. 1–13 (2018).
  • [10] Voglreiter P., Panchatcharam Mariappan, Pollari M., Flanagan R., Sequeiros R.B., Portugaller R.H., Fütterer J., Schmalstieg D., Kolesnik K., Moche M., RFA Guardian: Comprehensive Simulation of Radiofrequency Ablation Treatment of Liver Tumors, Scientific Reports, vol. 8, no. 787, pp. 1–13 (2018).
  • [11] Wang Z., Aarya I., Gueorguieva M., Liu D., Luo H., Manfredi L., Cuschieri A., Image-based 3D modeling and validation of radiofrequency interstitial tumor ablation using a tissue-mimicking breast phantom, International Journal of Computer Assisted Radiology and Surgery, vol. 7, no. 6, pp. 941–948 (2012).
  • [12] Singh S., Repaka R., Numerical study to establish relationship between coagulation volume and target tip temperature during temperature-controlled radiofrequency ablation, Electromagnetic Biology and Medicine, vol. 37, vol. 1, pp. 13–22 (2018).
  • [13] Audigier C., Mansi T., Delingette H., Rapaka S., Passerini T., Mihalef V., Pop R., Diana M., Soler L., Kamen A., Comaniciu D., Ayach N., Challenges to validate multi-physics model of liver tumor radiofrequency ablation from pre-clinical data, Computational Biomechanics for Medicine, pp. 2–38 (2016).
  • [14] Soetaert F., Crevecoeur G., Dupre L., Coupled electrical-thermal model for monopolar and bipolar radiofrequency liver tumor ablation, 2016 International Symposium on Fundamentals of Electrical Engineering (ISFEE), IEEE Xplore, pp. 1–5 (2016).
  • [15] Zhao Wei, Zhao-Hong Peng, Jin-Zhou Chen, Ji-Hong Hu, Jian-Qiang Huang, Yong-Neng Jiang, Gang Luo, Gen-Fa Yi, Hui Wang, Shen Jin, Bu-Lang Gao, Thermal effect of percutaneous radiofrequency ablation with a clustered electrode for vertebral tumors: In vitro and vivo experiments and clinical application, Journal of Bone Oncology, vol. 12, pp. 69–77 (2018).
  • [16] Frank K., Lindenborn H., Dahlhaus D.,Numerical and experimental characterization of radiofrequency ablation in perfused kidneys, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5707–5711 (2012).
  • [17] Hanks B., Frecker M., Moyer M., Optimization of a Compliant Endoscopic Radiofrequency Ablation Electrode, ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 5A, no. DETC2017-67357, pp. 1–12 (2017).
  • [18] Mellal I., Kengne E., El Guemhioui K., Lakhssassi A., 3D modeling using the finite element method for directional removal of a cancerous tumor, Journal of Biomedical Sciences, vol. 5, no. 4, no. 28, pp. 1–8 (2016).
  • [19] Pop M., Davidson S.R.H., Gertner M., Jewett M.A.S., Sherar M.D, Kolios M.C., A Theoretical Model for RF Ablation of Kidney Tissue and Its Experimental Validation, Lecture Notes in Computer Science, vol. 5958, pp. 119–129 (2010).
  • [20] Ali M.T. et al., Malignant kidney tumor ablation using electric probe heating, 2016 International Workshop on Computational Intelligence (IWCI), pp. 106–109 (2016).
  • [21] Chaichanyut M., Tungjitkusolmun S., Microwave Ablation Using Four-Tine Antenna: Effects of Blood Flow Velocity, Vessel Location, and Total Displacement on Porous Hepatic Cancer Tissue, Computational and Mathematical Methods in Medicine, vol. 2016, no. 4846738 (2016).
  • [22] Duan Bin, Wen Rong, Fu Yabo, Chua Kian-Jon, Chui Chee-Kong, Probabilistic finite element method for large tumor radiofrequency ablation simulation and planning, Medical Engineering and Physics, vol. 38, no. 11, pp. 1360–1368 (2016).
  • [23] Corral-Bustamante R.L., Trevizo M.A.F., Hernandez-Magdaleno J.N., Modeling of Shape Memory Alloys for Medical Design in Robotics, Manufacturing Science and Technology, vol. 3, no. 4, pp. 82–97 (2015).
  • [24] Kosturski N., Margenov S., Vutov Y., Comparison of Two Techniques for Radio-frequency Hepatic Tumor Ablation through Numerical Simulation, AIP Conference Proceedings, vol. 1404, no. 1, pp. 431–437 (2011).
  • [25] Chang I.A., Considerations for thermal injury analysis for RF ablation devices, The Open Biomedical Engineering Journal, vol. 4, pp. 3–12 (2010).
  • [26] Ulucakli M.E., Radiofrequency Catheter Ablation of Cardiac Arrhythmias, ASME 2011 International Mechanical Engineering Congress and Exposition, pp. 335–350 (2011).
  • [27] Chen Q., Müftü S., Meral F.C., Tuncali K., Akçakaya M., Model-based optimal planning of hepatic radiofrequency ablation, Mathematical Medicine and Viology: A Journal of the IMA, vol. 34, no. 3, pp. 415–431 (2017).
  • [28] Pennes H.H., Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm, Journal of Applied Physiology, vol. 85, no. 1, pp. 5–34 (1998).
  • [29] Soetaert F., Experimental and Numerical Analysis of Magnetic Nanoparticle Hyperthermia: an Interdisciplinary Cancer Treatment, PhD Thesis, Ghent University (2017).
  • [30] Wright N.T., Quantitative Models of Thermal Damage to Cells and Tissues, Heat Transfer and Fluid Flow in Biological Processes, pp. 59–76 (2015).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-b3c9fc31-b02c-4b18-bfa9-03caed1b692c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.