TEMPERATURA GRuntu W REJONIE STACJI POLARNEJ W HORNUSDZIE

Miroslaw Mietus, Janusz Filipiak
Instytut Meteorologii i Gospodarki Wodnej, Oddzial Morski w Gdyni
e-mail: mietus@imgw.gdynia.pl, filipiak@stratus.imgw.gdynia.pl

1. Wstęp

Temperatura gruntu jest ważnym z punktu widzenia charakterystyki wymiany ciepła pomiędzy atmosferą a podłożem elementem meteorologicznym. Analiza wieloletniej serii temperatury gruntu może ponadto dostarczyć szeregu ważnych informacji dotyczących zmienności warunków meteorologicznych występujących w otoczeniu obszaru badań.

Rejon południowego wybrzeża Spitsbergena znajduje się w kręgu zainteresowań polskich badaczy od wielu już lat. W roku 1957 miała miejsce pierwsza z serii polskich wypraw polarnych, realizowana w ramach Międzynarodowego Roku Geofizycznego. Zebrane w czasie trwania sezonu 1957/58 materiał pozwolił na wstępną ocenę warunków termicznych w regionie Hornsundu (Baranowski 1968). Systematyczne, nieprzerwane po dzień dzisiejszy, pomiary elementów meteorologicznych, włączając temperaturę gruntu, prowadzone są na stacji, zlokalizowanej na północnym brzegu wejścia do fiordu Hornsund, od roku 1978. Zainstalowano wówczas min. komplet standardowych ręcznych termometrów kolankowych na głębokościach 5, 10, 20 i 50 cm. W roku 1980 zestaw wzbogacono o dodatkowe termometry wyciągowe do pomiaru temperatury gruntu na głębokościach 80 i 100 cm. Pomiary temperatury gruntu płynących warstw prowadzono trzy razy na dobę, pomiary termometrami wyciągowymi natomiast - raz na dobę. Zaznaczyć należy również, iż w sezonie 1981/82 pomiary temperatury gruntu w Hornsundzie nie były prowadzone przez obserwatorów IMGW, serie pomiarowe z tych lat zawierają braki. W historii pomiarów odnotowano jedno przesunięcie pogłębienia termometrów gruntowych o kilka metrów w stosunku do pierwotnej lokalizacji; przeprowadzone wówczas wiercenia potwierdziły niemal identyczną zgodność budowy geologicznej gruntu na obu połekach. Zebrane materiał pomiarowy obejmuje blisko 23-letnie serie pomiarowe temperatury gruntu z lat 1978-2000 z głębokości 5, 10, 20, 50 i 100 cm. Celem pracy jest określenie podstawowych cech zmienności temperatury gruntu w rejonie zatoki Hornsund oraz ocena możliwości wykorzystania omawianego elementu meteorologicznego jako indykatora zachodzących w danym rejonie zmian warunków termicznych uwarunkowanych zarówno procesami globalnymi, jak i wpływem samej stacji.
2. Zmienność temperatury gruntu w Hornsundzie

Przebieg tautochron temperatury gruntu przedstawia zmienność serii średnich miesięcznych na głębokościach standardowych 5, 10, 20, 50 i 100 cm (ryc. 1). Miesiące sezonu zimowego, określone dla warunków Hornsundu na podstawie kryterium Baranowskiego (Baranowski 1968), a obejmującego okres od października do kwietnia (Miętus 1992) charakteryzują się podobnym przebiegiem temperatury gruntu w warstwie objętej badaniami. W okresie od października do lutego najchłodniejsze pozostają najpłytsze warstwy gruntu, na głębokości 5 cm. Zdecydowanie największy pionowy gradient termiczny w analizowanym przekroju (ΔT/Δz) jest notowany w listopadzie (4°C) i grudniu (4,5°C). Wzrost temperatury do głębokości 100 cm postępuje niemal prostoliniowo.
Ryc. 1. Średnie miesięczne tautochrony w Hornsundzie wraz z wartościami odchylen standardowych dla miesięcznych populacji dla okresu 1979-1999

Fig. 1. Vertical profiles of mean monthly soil temperature in Hornsund and the values of standard deviation, 1979-1999

Począwszy od stycznia do końca okresu termicznej zimy gradient termiczny w powierzchniowej warstwie gruntu jest mniejszy niż na większych głębokościach. Kulminacja najniższej średniej temperatury gruntu przypada na luty, oscyluje wówczas ona w zakresie od poniżej -12°C na głębokości 5 cm do około -9°C na głębokości 100 cm. Odnotować należy także, że największa dyspersja analizowanego elementu występuje w grudniu i w styczniu. Wartości bezwzględne odchylen standardowych temperatury gruntu w lutym są na każdym z poziomów mniejsze od notowanych dla listo-
pada. Tautochrony dla marca i kwietnia cechuje zauważalnie odmienny przebieg w stosunku do okresu od października do lutego. W marcu w warstwie pomiędzy 10 i 20 cm panuje izotermia, w kwietniu najchłodniej jest na głębokości 20 cm, w warstwie położonej wyżej zauważalne jest postępujące od powierzchni gruntu ocieplenie. W czasie trwania termicznej wiosny (maj) warunki termiczne w gruncie ulegają nieomal całkowitemu odwróceniu, zdecydowanie najcieplejsze są warstwy położone najbliżej powierzchni gruntu. W warstwie od 50 do 100 cm panuje izotermia o wartości około −5,5°C. Grunt w całym swym przekroju pionowym pozostaje nadal jednak przemarznięty.

Rozmazuwanie gruntu rozpoczyna się dopiero w początkach termicznego lata (od czerwca). W dalszym ciągu ujemna temperatura panuje jednak w dolnej warstwie analizowanego przekroju. Wyraźnie maleje także wartość odchylenia standardowego temperatury gruntu na wszystkich głębokościach. W sierpniu przyjmuje wartości odpowiednio: ±1,63°C, ±1,48°C, ±1,34°C i ±1°C na poziomach 5, 10, 20 i 50 cm. Najmniejsze odchylenie standardowe temperatury gruntu na głębokości 100 cm notowane jest we wrześniu i wynosi ±0,59°C. Przebieg tautochron okresu letniego od czerwca do sierpnia wskazuje na niemal prostoliniowy spadek temperatury gruntu, przy czym najwyższa temperatura gruntu występuje w lipcu i sierpniu, zależnie od głębokości. W lipcu na głębokościach 5, 10 i 20 cm wartości średnie przekraczają 5°C, na niższych głębokościach wartości najwyższe występują z miesięcznym opóźnieniem. W sierpniu temperatura na głębokościach 50 i 100 cmosiąga odpowiednio 3°C i 2°C. Godnym podkreślenia faktem jest także bardzo wysoka wartość pionowego gradientu termicznego w profilu pionowym w lipcu (5,5°C). Poczynając od lipca przez dwa kolejne miesiące letnie i jeden jesienny – wrzesień w analizowanej warstwie gruntu panują dodatnie temperatury. We wrześniu warunki termiczne w gruncie określić można jako izotermiczne, w całym analizowanym przekroju notowana jest temperatura około 1°C. W początkach sezonu zimowego następuje szybkie przemarznięcie gruntu, tautochrona przybiera typowy dla miesiące zimowych kształt.
Średnia wieloletnia temperatura roczna w analizowanym przekroju (ryc. 2) pozostaje wyraźnie ujemna, zmieniając się od około -4,5°C w warstwie płytszej do około -4,2°C. Odchylenie standardowe obliczone dla wieloletniej populacji średnich dobowych wskazuje na blisko dwukrotnie większy zakres zmienności temperatury gruntu na głębokości 5 cm w porównaniu z warstwa najgłębszą.

Przebieg temperatury gruntu w skali roku na poszczególnych poziomach (ryc.3) wskazuje na istnienie dwóch przejściowych okresów, w trakcie których dochodzi do odwrócenia profilu termiczno-go analizowanego przekroju. Pierwszy z nich przypadła na drugą połowę września, kiedy to po stanie krótkotrwałej (dwutygodniowej) izotermii, temperatura w warstwach głębszych położonych zaczyna przewyższać wartość notowaną w warstwach płytszych. Najwyższa temperatura panuje w warstwie położonej najniżej. Dodatkowo jeszcze przebieg krzywej obrazującej zmiany temperatury na głębokości 100 cm wskazuje na występowanie około jednomiesięcznego opóźnienia tempa spadku temperatury, w stosunku do tego który ma miejsce w chłodnej porze roku w płytszych warstwach. Głębiej położone warstwy pozostają najcieplejsze do okresu termicznej wiosny (maj), gdy dochodzi do odwrócenia układu obserwowanego w okresie zimy. Do najcieplejszych zaliczane są warstwy leżące do głębokości 10 cm. Zaznaczyć należy różnice tempa jesiennych i wiosennych zmian. Wiosenne rozmarszanie gruntu przebiega znacznie wolniej niż jesienne zamarzanie, w głębszych warstwach zmiany temperatury przebiegają wolno.

Ryc. 3. Zmienność średniej temperatury gruntu na głębokościach 5, 10, 20, 50 i 100 cm w Hornsundzie w okresie 1979-1999 wyglądu za pomocą 7-dniowej średniej ruchomej

Fig. 3. Variability of mean soil temperature at depth of 5, 10, 20, 50 and 100 cm in Hornsund in the period 1979-1999 smoothed by the 7-day running mean

W rocznym cyklu przebiegu temperatury gruntu w warstwie do 100 cm w Hornsundzie podkreślę należy kilka znaczących faktów. Przez większość części roku w gruncie panują ujemne tempera-

71
tury, jest on przemarznięty na całej głębokości. W okresach przejściowych – wiosną i jesienią, trwa-
ujących zaledwie około miesiąca, w gruncie panują warunki zbliżone do izotermii. Podkreślić należy
jednak znacznie lepsze jej wykształcenie w sezonie jesiennym. Zaledwie niespełna cztery miesiące
(od czerwca do września) grunt pozostaje rozmarznięty. Zakres zmienności temperatury gruntu jest w
miesiącach chłodnych znacznie większy niż w trakcie miesięcy ciepłych, przy czym należy także
podkreślić, że płytsze warstwy gruntu cechuje większa zmienność niż warstwy położone głębiej.

Przebieg różnicy temperatury pomiędzy poszczególnymi poziomami gruntu (ryc.4) pozwala
na identyfikację warstw magazynujących ciepło podczas kolejnych sezonów termicznych. Uwagę
zwraca zgromadzenie niewielkiej ilości ciepła w warstwie przypowierzchniowej, co świadczy nie tyle o
jej niewielkiej pojemności cieplnej, ile o dużej aktywności termicznej tej warstwy i dużej zmienności
wymiany ciepła z otoczeniem. Zdecydowanie najwięcej ciepła magazynują warstwy położone najgłę-
biej. W trakcie chłodnej pory roku największe różnice temperatury występują pomiędzy poziomami
położonymi na głębokości 50 i 100 cm, co wskazuje na akumulację dużych ilości ciepła w warstwach
położonych na większych głębokościach. Wiosna i pierwsza połowa sezonu letniego to jednak okres,
podczas którego najwięcej ciepła pozostaje w warstwie nadleżnej, położonej pomiędzy 20 a 50 cm.
Zaznaczają się wzmiarkowane już wcześniej okresy zmiany charakteru termicznego poszczególnych
warstw. Opóźnienie szybkiego wczesnozimowego spadku temperatury na największych głęboko-
ściach w stosunku do warstw położonych płyce powoduje, że w ciągu pierwszego miesiąca po okresie
wczesniowej izotermii przeważające zasoby ciepła znajdują się w warstwie położonej pomiędzy 20 a
50 cm.

![Diagram showing soil temperature differences](image)

Ryc. 4. Zmienność różnicy średniej temperatury gruntu pomiędzy poziomami na głębokościach
5, 10, 20, 50 i 100 cm w Hornsundzie w okresie 1979-1999

Fig. 4. Variability of the difference of mean soil temperature between the levels at depth of 5, 10, 20, 50
and 100 cm in Hornsund in the period 1979-1999
Drugie z okresów przejściowych, wiosenno-wczesnoletni nie charakteryzuje się tak szybkimi, jak jesienią i wczesną zimą zmianami charakteru termiki poszczególnych warstw. Fakt, iż warstwy gruntu położone bliżej powierzchni cechują się oscylującą wokół 0°C wartością $\Delta T = T_{50} - T_{100}$ świadczy o tym, że cała warstwa do 20 cm uczestniczy aktywnie i z dużą dynamicą w procesie wymiany ciepła, ewentualne zmiany warunków na powierzchni powodują prawie natychmiastowe zmiany warunków termicznych w gruncie. Warstwy głębokie położone cechują większą bezwładność termiczną. Reagują one także na procesy zachodzące w warstwach leżących wyżej oraz w przyziemnej warstwie atmosfery, jednakże typowe wartości zmian temperatury w warstwie najgłębszej położonej oscylują w sezonie zimnym średnio rzecz biorąc pomiędzy $-3,7°C$ a $0°C$. Wraz ze skracaniem się czasu śwarcenia Słońca w Hornsundzie obserwowane jest postępujące wychładzanie warstw wyżej położonych przy słabszych zmianach warunków termicznych na głębokości 100 cm. Z chwilą rozpoczęcia nocy połarnej temperatura gruntu na poziomie 100 cm jest o blisko 3,2°C wyższa niż na poziomie 50 cm. Przez kolejnych około 110 dni trwania nocy połarnej wartość temperatury tej warstwy gruntu oscyluje między $-3,8°C$ a $-1,8°C$.

Okres spadku bezwzględnej wartości różnicy temperatury pomiędzy najgłębszej położonymi poziomami występuje zazwyczaj w parę dni po zmniejszeniu grubości pokrywų śnieżnej o kilka centymetrów spowodowanym bądź odwilżą, bądź silnym wywietrzeniem śniegu. Od końca nocy połarnej różnica temperatury w warstwie położonej najniżej systematycznie maleje, przekraczając około trzeciej dekady mają wartość 0°C, co oznacza wyższą temperaturę gruntu na głębokości 50 cm w stosunku do poziomu 100 cm. Zbiega się to z rozpoczęciem procesu tajania pokryw śnieżnej. Nie znajduje potwierdzenia opisane przez Glowickiego (1985), a stwierdzone dla sezonu 1981/82, zjawisko występowania w górnej warstwie gruntu początkowy od maja dodatkowych, skierowanych ku powierzchni strumieni ciepła.

3. Związek elementów meteorologicznych z termiką gruntu w Hornsundzie

Odmienność charakter przebiegu procesów jesiennego wychładzania i wiosennego ogrzewania się gruntu skłania do zastanowienia się nad zależnościami, jakie istnieją pomiędzy zmiennością temperatury gruntu a warunkami meteorologicznymi panującymi w miejscu pomiarów. Wyniki badań Brazdila et al. (1988) wskazują na niewielką zależność termiki gruntu w całym analizowanym profilu od zmian temperatury powietrza, wpływ ten odnosi się wyłącznie do warstwy przypowierzchniowej. Wyniki analizy zmienności temperatury powietrza (ryc.5) i gruntu (ryc.3) w Hornsundzie nie potwierdzają powyższego wniosku, gdyż bardzo wysoka, zbliżona do jedności wartość współczynnika korelacji pomiędzy analizowanymi elementami wskazuje na obecność silnego, statystycznie istotnego związku obydwu elementów. Potwierdza to dodatkowo wyniki wcześniejszych badań, dotyczących zależności zmian temperatury gruntu na głębokości 5 cm od temperatury powietrza, mówiących o istnieniu silnego związku korelacyjnego pomiędzy temperaturami obydwu ośrodków (Miętus 1988). Opisana zależność słabnie w głębszych partiach gruntu. Słabiej zaznacza się również podczas chłodnej pory roku. Ujawnia się wówczas związek termiki gruntu z innymi elementami meteorologicznymi, pośród których najważniejszą rolę odgrywają dopływ bezpośredniego promieniowania słonecznego oraz czas zalegania i grubość trwały pokrywy śnieżnej.
Fig. 5. Variability of maximum, mean, minimum and minimum at the ground temperature in Hornsund in the period 1979-1999 smoothed by the 7-day running mean.

Roczny przebieg usłonecznienia w Hornsundzie (ryc. 6) jest kształtowany przez czynniki astronomiczne (wysokość Słońca nad horyzontem) i cyrkulacyjne (konsekwencją wpływu ośrodków barycznych i napływu określonych mas powietrza jest wzrost lub spadek zachmurzenia). Przez trzy i pół miesiąca trwa w Hornsundzie noc polarna (od początku listopada do połowy lutego), przez co całkowicie odcisłym jest dopływ promieniowania słonecznego. Na występowanie maksymalnych sum dobowych na przełomie kwietnia i maja wpływ mają sytuacje synoptyczne charakterystyczne dla tych miesięcy. W okresie tym Spitsbergen bardzo często znajduje się pod wpływem ośrodków antycyklo- nalnych (59% typów cyrkulacji w maju to sytuacje wyżowe, Niedźwiedź 1997), co znajduje swoje konsekwencje w małym stopniu zachmurzenia.

Początki formowania trwałej pokrywy śnieżnej w Hornsundzie przypadają na wrzesień, aczkolwiek sporadyczne opady śniegu zdarzają się już w sierpniu (Miętus 1991, Pereyma 1981). Po wstępnej fazie formowania się pokrywy śnieżnej (ryc.7), w trakcie której dochodzi wielokrotnie do jej stopienia, następuje wytworzenie się w listopadzie pokrywy trwalej, po czym występuje okres przyrostu jej miąższości. Proces wzrostu pokrywy jest niejednokrotnie hamowany w wyniku występowania odwilży, bądź wskutek wywiewania śniegu. Podczas końcowych miesięcy zimy pokrywa śnieżna na stacji w Hornsundzie osiąga przeciwną grubość 37 cm. W końcu maja i czerwcu obserwowana jest szybka ablacja pokrywy śnieżnej.
Ryc. 6. Zmiennosc średniej dobowej sumy usłonecznienia w Hornsundzie w okresie 1979-1999 wyglaszone za pomocą 7-dniowej średniej ruchomej

Fig. 6. Variability of mean daily sunshine duration in Hornsund in the period 1979-1999 smoothed by the 7-day running mean

Ryc. 7. Zmiennosc średniej grubości pokrywy śnieżnej w Hornsundzie w okresie 1979-1999 wyglaszone za pomocą 7-dniowej średniej ruchomej

Fig. 7. Variability of mean depth of snow cover in Hornsund in the period 1979-1999 smoothed by the 7-day running mean

Z końcem okresu dnia polarnego zbiega się jesienny i wczesnozimowy gwałtowny spadek temperatury gruntu, zwłaszcza w powierzchniowej warstwie gruntu. Szybkie wychładzanie gruntu trwa nadal wraz z nastaniem nocy polarnej, po czym jego zahamowanie przypada na okres pojawienia się i wzrostu trwałej pokrywy śnieżnej. Dalszy spadek temperatury gruntu, trwający do lutego, jest
już zdecydowanie wolniejszy. Słaba rola termoizolacyjna pokrywy śnieżnej w tym okresie jest spowodowana kilkoma znaczącymi przyczynami. Jako najważniejszą wymienić należy małą miąższość śniegu (maksymalnie do 40 cm). Według niektórych badaczy (Nicholson i Granberg 1973) dopiero pokrywa o grubości 40 cm i więcej, która w Hornsundzie wykształca się dopiero pod koniec sezonu zimowego, stanowi krytyczną wartość termoizolacyjności śniegu. Nie bez znaczenia jest także fakt wzrostu gęstości pokrywy śnieżnej podczas jej sezonowego metamorfizmu, co powoduje z kolei wzrost wartości współczynnika przewodnictwa cieplnego. Okres ten przypada jednak na początek dnia polarnego, w sład za czym obserwowany jest początek procesu ogrzewania gruntu.

4. Analiza zmienności okresowej temperatury gruntu w Hornsundzie

W celu określania cech międzyrocznej zmienności temperatury gruntu wykorzystano analizę fourierowską, która pozwala na przedstawienie zmienności temperatury gruntu na poziomie z za pomocą następującej superpozycji:

\[T(z,t) = a_0 + \sum_{i=1}^{365} a_i \sin \omega_i t + \sum_{i=1}^{365} b_i \cos \omega_i t \]

Periodogram szeregu fourierowskiego stanowiący odpowiednik widma całkowitego określony jest następująca zależnością:

\[I(\omega) = \sum_{i=1}^{365} I_i(\omega_i) = 0.5 \sum_{i=1}^{365} (a_i^2 + b_i^2) \]

Otrzymane wyniki (tab. 1) wskazują, że szeregi temperatury gruntu na analizowanych głębokościach mogą być z wystarczającą dokładnością opisane za pomocą równań pierwszej harmoniki.

Tabela 1. Współczynniki wielomianu fourierowskiego dla \(k = 0, 1 i 2 \), standaryzowane wartości periodogramu oraz wartości średniego błędu kwadratowego aproksymacji temperatury gruntu wielomianem fourierowskim o okresie \(T = 366 \) dni, Hornsund, VI.1978 – VII.2000

<table>
<thead>
<tr>
<th>Poziom [cm]</th>
<th>(a_0) [(^\circ)C]</th>
<th>(a_1) [(^\circ)C]</th>
<th>(b_1) [(^\circ)C]</th>
<th>(a_2) [(^\circ)C]</th>
<th>(b_2) [(^\circ)C]</th>
<th>(I_{1,2})</th>
<th>(I_{2,3})</th>
<th>Średni błąd kwadratowy, [(^\circ)C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>-4,48</td>
<td>8,93</td>
<td>0,25</td>
<td>1,75</td>
<td>-0,62</td>
<td>0,9319</td>
<td>0,0404</td>
<td>1,57</td>
</tr>
<tr>
<td>10</td>
<td>-4,48</td>
<td>8,80</td>
<td>0,45</td>
<td>1,68</td>
<td>-0,60</td>
<td>0,9361</td>
<td>0,0383</td>
<td>1,49</td>
</tr>
<tr>
<td>20</td>
<td>-4,60</td>
<td>8,44</td>
<td>0,81</td>
<td>1,52</td>
<td>-0,46</td>
<td>0,9418</td>
<td>0,0330</td>
<td>1,36</td>
</tr>
<tr>
<td>50</td>
<td>-4,61</td>
<td>7,29</td>
<td>1,54</td>
<td>0,91</td>
<td>-0,06</td>
<td>0,9602</td>
<td>0,0144</td>
<td>0,92</td>
</tr>
<tr>
<td>100</td>
<td>-3,81</td>
<td>5,32</td>
<td>2,45</td>
<td>0,37</td>
<td>-0,20</td>
<td>0,9687</td>
<td>0,0050</td>
<td>0,62</td>
</tr>
</tbody>
</table>
W każdym z przypadków opisuje ona ponad 93% całkowitej dyspersji przybliżanego ciągu. Wartości oscylacji rocznych uzyskane za pomocą pierwszej harmoniki najbardziej różnią się od wartości rzeczywistych w przypadku temperatury gruntu najpłytszej warstwy analizowanego przekroju, na co wskazują wartości średniego błędu kwadratowego.

![Temperature profile diagram](image)

Ryc. 8. Pionowy profil maksymalnej temperatury gruntu
Fig. 8. Vertical profile of maximum soil temperature

Przyjmując, że zmienność temperatury na każdym z analizowanych poziomów opisana jest jedynie przez pierwszą harmoniczną, możliwe jest określenie maksymalnej w skali roku temperatury na każdym z poziomów. Następnie zakładając liniową zmienność temperatury w warstwie poniżej poziomu 50 cm możliwe jest określenie głębokości, na której maksymalna wartość temperatury nie przekracza wartości 0°C. Ustalona w powyższy sposób głębokość zalegania izoterm 0°C wynosi około 185 cm (ryc. 8). Z dużym prawdopodobieństwem głębokość tę można uważać za poziom zalegania aktywnej zmarzliny.

5. Długookresowe zmiany warunków termicznych w Hornsundzie

Przeprowadzona analiza zmienności temperatury powietrza w Hornsundzie (ryc. 9) wykazała istnienie dodatniego trendu wartości serii średnich rocznych z okresu 1979-1999. Statystyczna istotność trendu była weryfikowana za pomocą testu t-Studenta na poziomie istotności 1-α = 0,95. Roczny przyrost temperatury powietrza w Hornsundzie w analizowanym okresie oceniono na 0,074°C. Odpowiada to przyrostowi temperatury o około +1,6°C w rozważanym okresie. Wieloletni przebieg
średnich wartości rocznych wskazuje na osłabienie w dekadzie lat dziewięćdziesiątych międzyrocznych wahań temperatury powietrza, jakie w latach osiemdziesiątych osiągały znaczne wartości (5-6°C).

Ryc. 9. Zmienność średniej rocznej temperatury powietrza w Hornsundzie w okresie 1979-1999
Fig. 9. Variability of mean annual air temperature in Hornsund in the period 1979-1999

Ryc. 10. Zmienność średniej rocznej temperatury gruntu na głębokościach 5, 10, 20 i 50 cm w Hornsundzie w okresie 1979-1999
Fig. 10. Variability of mean soil temperature at depth of 5, 10, 20 and 50 cm in Hornsund in the period 1979-1999
Analiza zmienności temperatury gruntu w okresie 1979-1999 (ryc. 10) wykazała występowanie dodatniej tendencji zmian średnich wartości rocznych temperatury gruntu na wziętych pod uwagę głębokościach 5, 10, 20 i 50 cm. Statystycznie istotny wzrost wartości dotyczy jednak jedynie temperatury gruntu na poziomie 10 cm. Ustalono, iż roczny przyrost wartości temperatury na tej głębokości wynosi 0,126°C.

6. Podsumowanie

Średnia roczna temperatura gruntu w analizowanym przekroju jest ujemna, zmieniając się od około -4,5°C w warstwie płytszej do około -4,2°C w warstwach głębszej położonych. Przez większą część roku w gruncie panują ujemne temperatury, jest on przemarznięty na całej głębokości. W trwających zaledwie około miesiąca okresach przejściowych – wiosną i jesienią, w gruncie panuje izotermia, lepiej wykształcona w sezonie jesiennym. Grunt pozostaje rozmarznięty przez niespełna cztery miesiące (od czerwca do września). Zakres zmienności temperatury gruntu jest w miesiącach chłodnych znacznie większy niż w trakcie miesięcy ciepłych. Większa zmienność temperatury cechuje płytsze warstwy gruntu. Zdecydowanie najwięcej ciepła magazynują poziomy położone w najgłębших warstwach analizowanego przekroju. W trakcie chłodnej pory roku największe ilości ciepła zmagazynowane są w warstwie pomiędzy poziomami położonymi na głębokości 50 i 100 cm. Wiosną i w pierwszej połowie sezonu letniego najwięcej ciepła zgromadzone jest w warstwie nadległej, położonej pomiędzy 20 a 50 cm.

Największy wpływ na kształtowanie temperatury gruntu wywiera zmienność temperatury powietrza, dodatkowo także w podobnych analizach uwzględniać należy dopływ bezpośredniego promieniowania słonecznego i grubość pokrywy śnieżnej. Roczna zmienność temperatury gruntu na analizowanych głębokościach może być z wystarczającą dokładnością aproksymowana za pomocą równania pierwszej harmonicznej. Głębokość, na której oscylacje temperatury gruntu nie przekraczają wartości 0°C leży nieco poniżej 184 cm.

Stwierdzono występowanie dodatniej tendencji zmian średnich wartości rocznych temperatury gruntu na głębokościach 5, 10, 20 i 50 cm. Statystycznie istotnym trendem zmian cechuje się jednak jedynie temperatura gruntu na poziomie 10 cm, który wynosi +0,126°C/rok w okresie 1979-1999.

Literatura

Brazdił R. et al., 1988. Temperature conditions and energy balance of the active surface of a moraine and maritime terrace in the Werenskiold Area, Spitsbergen [w:] Results of Investigations of the Polish Scientific Spitsbergen Expeditions, 7, Acta UWr. No 1069.
The soil temperature at Polar Station in Hornsund

Summary

The mean annual soil temperature, evaluated for the depths 5, 10, 20, 50 and 100 cm is negative and varies between -4.5°C in the subsurface layer and -4.2°C in the deeper parts of the analyzed profile. The soil is frozen through almost nine months in the year. During the lasting a short period spring and autumn there is an isothermy in the soil. Greater variability occurs in the subsurface layer. The layer between 50 and 100 cm accumulates the greatest amount of the heat. During the spring and the first half of summer the upper layer accumulates more heat. The soil temperature depends significantly on the variability of the air temperature. Additionally the soil temperature is influenced also by sunshine duration and snow cover depth. The annual variability of the soil temperature can be approximated with the first harmonic. Below the depth of 184 cm, the inter-annual soil temperature oscillations do not exceed 0°C. There are positive tendencies in variability of mean soil temperature time series at all depths. At the depth of 10 cm this tendency has a character of a statistical trend. Its value is +0.126°C/year in the period 1979-1999.