Calculation of the mean long-term service speed of transport ship

Continuation at the first part of the paper published in the Polish Maritime Research No.4(50), October 2006

Part II

Service speed of ship sailing on regular shipping route in real weather conditions

Tadeusz Szelangiewicz
Katarzyna Żelazny
Szczecin University of Technology

ABSTRACT

Service speed obtainable by a ship in real weather conditions when sailing on a given shipping route, is one of the major parameters which have great impact on ship operation costs. The so far used, very approximate method of service speed prediction based on “service margin”, is very little exact. In this paper a new method based on additional ship resistance dependent on mean statistical parameters of wave and wind occurring on a given shipping route, is presented. The mean long-term service speed is calculated on the basis of the calculated additional resistance and the screw propeller and propulsion engine parameters. Also, a new definition of service margin and a way of its calculation is presented apart from the results of the mean service speed calculation depending on ship’s type and size and shipping route.

Keywords: ship service speed, wind, waving, shipping route, service margin, long-term prediction.

SHIP PROPULSION SYSTEM

Screw propeller

Ship propulsion system is represented first of all by a propel
-
erer cooperating with propulsion engine. To calculate instanta
-
eneous ship service speed it is necessary to know hydrodynamic
characteristics of the propeller (derived from model tests or
calculated by using approximate methods) and the characteri
-
istics which describe engine load area.

In the calculations were used the characteristics of B-Wa
geningen screw propellers [4,5], from which propeller’s thrust
and torque were calculated.

Thrust of the propeller placed behind the ship hull
is expressed as follows:

\[T = \frac{R_C}{1 - t} \] (27)

where:

\(R_C \) – total resistance of ship sailing in rough waters
\(t \) – thrust deduction factor.

Thrust of free propeller can be calculated from the formula:

\[T = K_T \rho_p D_p^4 n_p^2 \] (28)

where:

\(K_T \) – thrust coefficient which – for typical B-Wageningen propellers of given values of the pitch ratio \((P/D)\), blade area ratio \((A_e/A_0)\), number of blades \((Z)\) – is approximated by using the expression:

\[K_T = A_0 + A_1 J + A_2 J^2 + A_3 J^3 \] (29)

where:

\(A_0, A_1, A_2, A_3 \) – coefficients of the polynomial describing thrust characteristics, depending on \((P/D)\), \((A_e/A_0)\), \(Z \)
\(J \) – advance coefficient:

\[J = \frac{V[1 - w(V)]}{D_p n_p} \] (30)

\(w(V) \) – wake fraction depending on the ship speed \(V \).

The propeller – when working – generates the torque \(Q \):

\[Q = K_Q \rho_p D_p^5 n_p^2 \] (31)

where:

\(K_Q \) – torque coefficient which – like the thrust coefficient – can be expressed for a given propeller
in the following form:

\[K_Q = B_0 + B_1 J + B_2 J^2 + B_3 J^3 \] (32)

where:

\(B_0, B_1, B_2, B_3 \) – coefficients of the polynomial describing torque characteristics, depending on \((P/D)\), \((A_e/A_0)\), \(Z \).
Free-propeller efficiency (free from ship’s hull) is equal to:

$$\eta = \frac{K_T}{K_Q} \cdot \frac{J}{2\pi}$$ \hspace{1cm} (33)

The hydrodynamic characteristics of propeller achieved from model tests [4,5] are determined for a given Reynolds number and propeller surface state. In order to use the characteristics for the behind-the-hull propeller were introduced relevant corrections associated with influence of Reynolds number and real state of propeller surface, which makes it possible – together with knowledge of ship hull surface state – to investigate influence of ship and propeller ageing on ship service speed.

The expressions (27) and (28) for propeller thrust are valid for ship sailing in still and rough waters provided its oscillating and relative motions are so small that propeller emerging does not occur. During sailing in waves at large oscillating and relative motions the propeller operates in highly aerated water or emerges. It generates thrust variations and drop of mean effective thrust value relative to that in still water (even if the ship goes at constant speed and number of propeller rotations).

The thrust decrease is caused a.o. by an influence of water particles being in oscillating motion, on wake, as well as by propeller emerging resulting from large relative motions of the ship in waves. The thrust decrease due to ship motions in waves has been discussed in various publications where approximate formulae for estimating the influence of relative motions on operational parameters of propeller are included [3].

The propeller thrust decrease due to ship relative motions in waves is defined by means of the following coefficient [3] :

$$\beta_T = \frac{K_{Tw}(\frac{h_p}{R})}{K_T}$$ \hspace{1cm} (34)

where :

$$K_{Tw}(\frac{h_p}{R})$$ – thrust coefficient of emerging propeller (the quantities h_p and R are shown in Fig.11);

K_T – thrust coefficient of fully immersed propeller.

Changes of values of the coefficient β_T in function of $\frac{h_p}{R}$ are shown in Fig.12, [6].

In simulative propeller thrust calculations, the influence of wave parameters on propeller operation effectiveness was taken into account (detailed analysis of the phenomenon is given in [9]) whereas the propeller emergence was mitigated by intentional reduction of ship speed.

Propulsion engine

The behind-the-hull propeller loads the ship engine with its torque (31). The relation of the propeller torque and propulsion engine output power is as follows:

$$Q = \frac{P_D}{2\pi n}$$ \hspace{1cm} (35)

where :

P_D – power delivered to the propeller

n – rotational speed of engine (for slow-speed engines if no reduction gear is applied : $n = \eta_p$):

$$P_D = N \cdot \eta_{LW} \cdot \eta_r \cdot \eta_p$$ \hspace{1cm} (36)

N – propulsion engine output power

η_r – relative rotative efficiency

η_{LW} – shaft-line efficiency

η_p – reduction gear efficiency, if applicable.

Engine output power for a designed ship is so selected as to obtain the propulsion system working point of the value equal to 0.85 N_m at the design (contractual) speed in still water. In real weather conditions, when wind and waves affect the ship and the additional resistance AR appears, then the propulsion system working point changes its location within the propulsion engine’s load area. By controlling fuel charge (and this way also rotational speed of engine and propeller) the working point can be positioned in the maximum continuous rating area or the limited rating area for engine overloading (Fig.13).

Therefore, in order to find an instantaneous speed at which a given ship would sail in considered weather conditions it is necessary to know the engine load area which is constrained by relevant characteristics. This area indicates where the propulsion system working point is to be located. For instance the area of a Sulzer engine is shown in Fig.13.

The particular areas are limited by the engine performance characteristic curves in the following form :

$$N = k_m \cdot n^m$$ \hspace{1cm} (37)

where :

N – engine output power

k_m – coefficient for a given characteristic curve

m – engine rotational speed
During ship sailing in rough water ship’s oscillating motions and their derivatives i.e. velocities and accelerations are the direct effect of waves. The secondary phenomena which accompany the oscillating motions are: shipping of water on deck, slaming, worsening of ship stability and manoeuvrability, additional dynamic loads on hull structure. The oscillating motions and accompanying phenomena depend on parameters of ship hull and waves as well as the ship speed V and course relative to waves (the angle β). The phenomena, especially if very intensive, may lead directly to averages and disasters at sea. It is possible to mitigate the phenomena, e.g. ship rolling - by changing ship’s course relative to waves (the angle β), reducing ship’s speed V, or simultaneous changing ship’s course and speed.

In predicting the mean service speed was made the assumption that ship’s speed reduction will be performed if:

$$\bar{U}_Z > \bar{U}_{Z\text{dop}}$$ \hspace{1cm} (38)

where:

- \bar{U}_Z - mean statistical value of the wave-generated phenomenon Z considered hazardous to ship
- $\bar{U}_{Z\text{dop}}$ - permissible value of the wave-generated phenomenon Z, at which the sailing ship is still safe.

In the performed calculations the ship course relative to waves was kept unchanged (though its changing is always possible), since in predicting the mean long-term ship service speed it was assumed that the ship heads the course resulting from the selected shipping route.

In assessing ship performance in waves and making decision on possible reduction of its speed, the following phenomena were taken into consideration: rolling, pitching, vertical accelerations, horizontal transverse accelerations, shipping of water on deck, slaming, propeller emerging. The calculation methods of the phenomena and the assumed acceptance criteria are presented in [1, 5, 8].

The points at which values of the parameters of ship sea-keeping qualities were calculated, are presented in Fig. 14, and in Fig.15, in the polar diagrams is shown an influence of ship speed and wave direction relative to ship on some phenomena induced by waves. The zone of unsafe intensity, i.e. where the sea-keeping criteria are exceeded, is marked red; yellow colour warns about a real hazard; green colour means the safe zone. It can be observed that reducing the speed one can mitigate intensity of the phenomena in question.

Intentional reduction of ship speed in view of hazardous wave-generated phenomena

![Fig. 13. The load area of an example Sulzer propulsion engine [2].](image)

Fig. 14. The points at which ship sea-keeping parameters were calculated:
1 – for slamming, 2 – for water shipping onto deck, and bow accelerations, 3 – for propeller emerging, 4 – for accelerations at wheelhouse.

![Wave characteristics](image)

Wave: $H_1 = 8.5 \text{ m} \; ; \; T_1 = 10.1 \text{ s} \; ; \; \mu = 0^\circ$

Water shipping on deck: $V = 17 \text{ w}$

- course angle $= 40^\circ$

Rolling: $V = 15 \text{ w}$

- course angle $= 135^\circ$

Horizontal transverse accelerations at wheelhouse: $V = 10 \text{ w}$

- course angle $= 100^\circ$

Vertical accelerations at wheelhouse: $V = 17.5 \text{ w}$

- course angle $= 60^\circ$

![Fig. 15. Influence course angle and speed of K1 ship on its selected sea-keeping qualities. Green - safe operation of ship. Yellow - warning on a real hazard (lower value of a relevant criterion is exceeded). Red - ship’s safety is endangered (upper value of a relevant criterion is exceeded).](image)
A METHOD FOR PREDICTING MEAN STATISTICAL SERVICE SPEED OF A SHIP SAILING ON A GIVEN SHIPPING ROUTE

Instantaneous service speed of ship

During ship motion in rough water, apart from still-water resistance also additional forces due to wind, waves and possible surface sea current act on the ship. These actions generate, apart from an additional resistance, a transverse force and a moment tending to rotate the ship around its vertical axis. The transverse force results in ship drifting, and the moment – in ship course changing. Ship’s passive rudder is to be laid appropriately to keep ship course constant under action of the external rotating moment. Under the assumption that the ship course has to be maintained, from the solution of the following non-linear equations:

\[Y_A(V) + Y_W(V) + R_C(V, \beta) + Y_R(V, \beta, \delta_R) = 0 \] \[M_A(V) + M_W(V) + M_S(V, \beta) + M_R(V, \beta, \delta_R) = 0 \]

(39) (39)

together with the relevant equations describing additional resistance forces, (presented below), for given values of the ship speed \(V \), course angle \(\psi \), wind parameters \(V_A, \gamma_A \), wave parameters \(H_s, T, \mu \) and possible sea current parameters \(V_c, \gamma_c \), the following quantities can be obtained:

\[\beta \] \(-\) ship drift angle
\[\delta_k \] \(-\) ship passive rudder angle
\[\Delta R \] \(-\) additional ship resistance due to wind, waves, current and passive rudder
\[R_c \] \(-\) total ship resistance to motion.

Schematic diagram of the complete calculation algorithm of \(R, \delta_k \), and \(R_c \) for given values of the ship motion parameters \(V, \psi \), wind parameters \(V_A, \gamma_A \), wave parameters \(H_s, T, \mu \) and current parameters \(V_c, \gamma_c \), was presented in [9].

The instantaneous ship service speed in variable weather conditions is calculated from the solution of the set of non-linear equations in such a way as to obtain the propulsion system working point laying within the engine continuous rating zone when total ship resistance and propeller thrust , as well as propeller torque and driving engine torque become equal to each other, respectively. Making use of the equations (4), (5), (27 + 36) one obtains the set of two non-linear equations:

\[(A_0 + A_1 J + A_2 J^2 + A_3 J^3) \rho_w D_p^2 n^2 - \frac{R_c}{1 - t} = 0 \]
\[(B_0 + B_1 J + B_2 J^2 + B_3 J^3) - \frac{N \eta_{elw} \eta_{elp} \eta_{el}}{2 \pi \rho_w D_p^2 n^2} = 0 \]

(40)

where:

\[J \] \(-\) advance coefficient (30)
\[R_c \] \(-\) a function of total ship resistance, depending on the ship speed \(V \), ship course angle \(\psi \), wave parameters \(H_s, T, \mu \) and wind parameters \(V_A, \gamma_A \)
\[N \] \(-\) driving engine output power determined by its characteristics valid within respective intervals of its rotation number \(n \).

To solve the set of equations (40) and determine instantaneous ship service speed it is necessary to know the total ship resistance \(R_c \) which depends not only on the statistical parameters of waves and wind occurring on a given shipping route but also on current speed, course and drift angle. Since all the quantities depend on random parameters of waves and wind the total ship resistance should be calculated for all statistical parameters of waves and wind occurring on a given shipping route. The calculation algorithm of instantaneous ship speed is presented in [9].

Mean statistical service speed of ship sailing on a given shipping route

During the long-term sailing of ship on an assumed shipping route the additional resistance due to wave action will depend not only on a wave height (and period) but also on geographical directions: of wave, \(\mu \), and ship course, \(\psi \). Also the additional resistance due to wind will depend, apart from the wind speed \(V_A \), on the directions \(\gamma \) and \(\psi \). It means that the additional resistance and also ship speed will depend on the values of the parameters of waves \(H_s, T_s, \mu, \gamma_s \) and ship motion \(V, \psi \), which may occur on a given shipping route within a long period of time.

In the case in question the surface sea current is considered to be a determinate phenomenon of the mean speed \(V_c \) and direction angle \(\gamma_c \). If a ship is assumed to enter a region of large-scale surface currents then the current action will be included into ship still-water resistance.

Therefore the occurrence probability of the additional resistance \(\Delta R \) of a given value, as well as the speed \(V \) which can be reached at occurrence of that additional resistance, depends on:

- the shipping route and probability of staying the ship in particular sea areas
- the statistical parameters of waves \((H_s, T_s, \mu) \), and wind, \((V_A, \gamma_A) \), and probability of occurrence of the parameters in given sea areas
- the probability of occurrence of the ship motion parameters \((V, \psi) \).

The probability of being the ship in a given situation when sailing in waves on a given route, is as follows:

\[p_w = f_A \cdot f_\psi \cdot f_\mu \cdot f_{HT} \cdot f_V \cdot f_\gamma \]

(41)

where:

\[f_A \] \(-\) probability of staying the ship in the sea area A
\[f_\psi \] \(-\) probability of staying the ship in the sea area A during the season S
\[f_\mu \] \(-\) probability of occurrence of the wave direction \(\mu \) in the sea area A during the season S
\[f_{HT} \] \(-\) probability of occurrence of the wave of the parameters \((H_s, T_s) \), propagating from the direction \(\mu \)
\[f_V \] \(-\) - probability of the event that the ship moves with the speed \(V \) and heads the course \(\psi \), respectively.

In a similar way can be expressed the probability \(p_s \) of being the ship in a given situation associated with wind state. In the calculations of additional resistance due to wind and waves it was assumed that wind speed and wave height are mutually correlated, hence \(p_w = p_s \). As the event of being the ship in a given situation described by (41) will result in generating an additional resistance and achieving a determined speed, hence:

\[p_w = p_R = p_V \]

(42)

where:

\[p_R \] \(-\) partial occurrence probability (in given conditions) of additional resistance
\[p_V \] \(-\) partial occurrence probability (in given conditions) of instantaneous ship service speed.

Values of the additional resistance due to wind, \(R_{sx_s} \), and that due to waves, \(R_{sw_s} \), depend on random parameters of wind
and waves. Therefore the same values of R_{xw} and R_{yw} can occur for different values of the parameters $V_A, \gamma_A, \bar{H}, T, \mu, \psi$. For each of the values of this way calculated additional resistance, a value of ship speed is calculated (the criteria concerning sea-keeping qualities are simultaneously examined to execute possible speed reduction in order not to violate them at given wave and wind conditions).

The total probability P_{TV} of achieving the ship speed V at a given value of the additional resistance ΔR, is as follows:

$$P_{TV} = \sum_{i=1}^{n_v} \sum_{j=1}^{n_A} \sum_{s=1}^{n_S} \sum_{T=1}^{n_T} \sum_{V=1}^{n_V} P_{TV} V_i(\Delta R_j)$$

where:

$$V_i(\Delta R_j) = \text{instantaneous ship service speed in function of instantaneous additional ship resistance}$$

n_A, n_S, n_T, n_V, n_W - numbers of sea areas (crossed by a given ship), seasons, wave directions, wave parameters, ship speeds and courses, respectively.

By calculating the distribution function of occurrence probability, $F(V)$, of the instantaneous ship speed V, the mean long-term ship service speed for a given shipping route, can be determined as follows:

$$V_E = \frac{\sum_{i=1}^{n_V} P_{TV} V_i(\Delta R = \text{const})}{\sum_{i=1}^{n_V} P_{TV} V_i}$$

where:

n_V - number of intervals containing similar values of the instantaneous ship service speeds.

On the basis of the presented calculation formula for the mean ship service speed, (44), were performed relevant calculations and analyses for example ships and shipping routes, whose results will be presented in the 3rd part of the paper.

NOMENCLATURE

- A_E - propeller blade area ratio
- $A_{p, A}, A_{B, B}, A_{w, W}$ - coefficients of the polynomial describing thrust characteristics
- B_p, B_B, B_W - coefficients of the polynomial describing torque characteristics
- D - propeller diameter
- f_s, f_o - probability of staying the ship in the sea area A
- $f_{O,T}$ - probability of occurrence of the wave of the parameters (\bar{H}, T), propagating from the direction μ
- f_s - probability of staying the ship in the sea area A during the season S
- f_s, f_o - probability of occurrence of the event that the ship moves with the speed V and heads the course ψ, respectively
- $f_{s, W}$ - probability of occurrence of a given wind direction
- H_A - significant wave height
- J - advance coefficient
- K_p - thrust coefficient
- $K_{e, e}$ - thrust coefficient of emerging propeller
- $K_{e, o}$ - torque coefficient
- $k_{e, o}$ - coefficient of a given characteristic curve of engine performance
- N_p - propulsion engine output power
- N_n - nominal output power of propulsion engine
- n - rotational speed of engine
- $n_{r, n}$ - nominal rotational speed of engine
- $n_{r, p}$ - rotational speed of propeller
- P_p - propeller pitch ratio
- P_D - power delivered to propeller
- P_{TV} - combined probability of reaching a given value of instantaneous ship service speed at occurrence of a given value of instantaneous additional ship resistance
- P_w - partial probability of staying the ship in a given situation
- P_r - partial occurrence probability of instantaneous additional resistance (in given conditions)
- P_v - partial occurrence probability of instantaneous ship service speed (in given conditions)
- Q - propeller torque
- R_{xw} - total ship resistance to motion
- $R_{xA, xw}$ - mean wind-induced forces exerted to going ship (R_{xw} - additional ship resistance due to wind)
- R_{xw}, R_{yw} - mean wave-induced drift forces (R_{xw} - additional ship resistance due to waves)
- T - free-propeller thrust
- T_f - mean characteristic wave period
- t - thrust deduction factor
- U - mean statistical value of the wave-induced phenomenon Z
- V - ship speed
- V_A, V_C - wind speed
- V_E - mean statistical ship service speed
- ψ - water density
- β - ship drift angle
- β_T - coefficient of propeller thrust decrease
- γ_A - geographical direction of wind
- δ_R - passive rudder angle
- η_p - free-propeller efficiency
- η_g - reduction gear efficiency
- η_{ro} - propeller rotative efficiency
- η_{sh} - shaft-line efficiency
- λ - rudder aspect ratio
- μ - geographical direction of wave
- ψ - geographical direction of ship course

BIBLIOGRAPHY

2. SULZER: General Technical Data for Marine Diesel Engines, 1986