PARTICULAR RELIABILITY CHARACTERISTICS OF TWO-ELEMENT PARALLEL TECHNICAL (MECHATRONIC) SYSTEMS

Zbigniew MATUSZAK
Maritime University of Szczecin

Abstract:
The paper characterizes the basic distributions of failure of elements that constitute the technical (mechatronical) systems: exponential, Weibull, normal, log-normal distribution. The description of two-element parallel technical systems with reliability characteristics has been made. Specific cases are studied where up time of the technical system elements have exponential, Weibull, normal, log-normal distributions and where the system consists of two parts with parallel reliability structure and of different types of distributions of elements up times. The order of elements in the analysis does not matter. The relevant characteristics of reliability for a system with two parallel elements are presented: up time distribution function of the system, system reliability, up time probability density of the system, the system failure intensity.

Key words: technical (mechatronical) system, distributions of elements failure, distributions of failures of two-element parallel technical systems

INTRODUCTION

The combination of mechanical, electrical, electronic, pneumatic elements into one operating technical system has been called in recent years a mechatronic device (system). Each of these elements has a specific character of durability, damage susceptibility and reliability. Reliability of devices and mechatronic device components is described by mathematical models – distributions of random variables, and particularly, the characteristics of reliability, which directly affect the reliability characteristics of mechatronic devices, into which they are included.

The most commonly used mathematical models of studying the reliability of technical devices are distributions of random variables: exponential, Weibull, normal, logarithmo-normal, normal truncated at zero, gamma, binomial (Bernoulli), Poisson, hypergeometric, geometric, and processes: Poisson, normal, Markov and semi-Markov. Distributions are probabilistic models, and processes are stochastic models [1, 2, 3, 4, 5].

In complex, responsible technical and mechatronic systems (a combination of mechanical, electrical, electronic, pneumatic operating components into a coherent technical system) reserving components are often used. The simplest reserving consists in a parallel inclusion of the same component into the system, which replaces the damaged component at the time of the primary failure. In more complex technical systems, the functions of the defective part may be taken by a different system component, with different operating characteristics, and thus with different reliability characteristics. Each of the components may have a different durability, damage and reliability character, which is described by the mathematical models - statistical distributions, and particularly the characteristics of reliability, which directly affect the reliability characteristics of a technical system they constitute.

The most commonly used mathematical models of studying the reliability of technical devices are distributions of random variables: exponential, Weibull, normal, logarithmo-normal, normal truncated at zero, gamma, binomial (Bernoulli), Poisson, hypergeometric, geometric, and processes: Poisson, normal, Markov and semi-Markov. Distributions are probabilistic models, and processes are stochastic models [1, 2, 3, 4, 5]. In further analysis the simplest and the most common models are assumed: exponential, Weibull, normal, or logarytmo-normal.

Many years of field tests and databases available on failure of components and technical equipment indicate that specific distributions for their reliability characteristics can be attributed to specific components and devices as well as to the typical types of damage [6, 7, 8, 9] (Table 1).
Functions of failure intensity of selected components and devices as well as typical types of damage

<table>
<thead>
<tr>
<th>Component, device</th>
<th>Distribution of functions of failure intensity</th>
<th>Type of damage</th>
<th>Distribution of functions of failure intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>small rubber parts such as seals, diaphragms</td>
<td>Weibull</td>
<td>catastrophic</td>
<td>exponential</td>
</tr>
<tr>
<td>components and equipment damaged by external factors</td>
<td>exponential</td>
<td>ageing</td>
<td>Weibull, gamma</td>
</tr>
<tr>
<td>electronic elements</td>
<td>exponential</td>
<td>very slow wear</td>
<td>exponential</td>
</tr>
<tr>
<td>devices with a dominant number of moving parts</td>
<td>Weibull</td>
<td>rapid wear</td>
<td>normal, logarithmo-normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>corrosive wear</td>
<td>gamma</td>
</tr>
</tbody>
</table>

Up time of the i-th element is a random variable with a distribution defined by the following characteristics:

- reliability of the component
  \[ R_i(t) = P[\tau_i \geq t] = 1 - F_i(t), t \geq 0, i = 1,2,..., n, \]  
  \( (1) \)

- probability density of the component up time
  \[ f_i(t) = \frac{dF_i(t)}{dt}, t \geq 0, i = 1,2,..., n, \]  
  \( (2) \)

- failure intensity of the component
  \[ \lambda_i(t) = -\frac{d}{dt} \ln R_i(t) = \frac{f_i(t)}{1 - F_i(t)} = \frac{f_i(t)}{R_i(t)}, t \geq 0, i = 1,2,..., n. \]  
  \( (3) \)

- the expected up time of the component
  \[ T_i = E[\tau_i] = \int R_i(t) dt, i = 1,2,..., n. \]  
  \( (4) \)

Weibull distribution

Weibull distribution describes the time of normal operation of such devices, in which damage is independent, any damage causes loss of equipment up time, each unit consists of a sufficiently large number of homogeneous components.

The element has a Weibull distribution with the parameters \((\alpha_i, \beta_i)(i=1,2,...,n)\), when its characteristics take the form:

- reliability of the component
  \[ R_i(t) = \exp(-\beta_i t^\alpha_i), t \geq 0, \]  
  \( (9) \)

- probability density of the component up time
  \[ f_i(t) = \alpha_i \beta_i t^{\alpha_i-1} \exp(-\beta_i t^\alpha_i), t \geq 0, \]  
  \( (10) \)

- failure intensity of the component
  \[ \lambda_i(t) = \alpha_i \beta_i t^{\alpha_i-1}, t \geq 0, \]  
  \( (11) \)

- the expected up time of the component
  \[ T_i = E[\tau_i] = \Gamma(1 + \frac{1}{\alpha_i}) \beta_i \Psi, t \geq 0. \]  
  \( (12) \)

A special case of Weibull distribution is a Rayleigh distribution in which the parameter \(\alpha_i=2\).

Normal distribution

The normal distribution is a model of reliability of any technical object in which there are damages resulting from the aging process, including wear. This is to be used if a described random variable depends on a number of phenomena and causes, none of which can be considered dominant.

The component \(\tau_i\) up time has a normal distribution when the probability density has the form

\[ f_i(t) = \frac{1}{\sigma_i \sqrt{2\pi}} \exp\left(-\frac{(t-\mu_i)^2}{2\sigma_i^2}\right), t \geq 0, \]  

where \(\mu_i\) and \(\sigma_i\) are the mean and standard deviation, respectively.
\[ f_i(t) = \frac{1}{\sigma_i \sqrt{2\pi}} \exp \left[ -\frac{(t - T_i)^2}{2\sigma_i^2} \right], \quad -\infty < t < \infty, \]  
\[ f_i(t) = \frac{1}{\sigma_i \sqrt{2\pi}} \int \exp \left[ -\frac{(x - T_i)^2}{2\sigma_i^2} \right] dx, \quad -\infty < t < \infty, \]  
and its distribution function
\[ F_i(t) = \frac{1}{\sigma_i \sqrt{2\pi}} \int_{-\infty}^{t} \exp \left[ -\frac{(x - T_i)^2}{2\sigma_i^2} \right] dx, \quad t \in \mathbb{R}, \]  
\[ F_i(t) = \frac{1}{\sigma_i \sqrt{2\pi}} \int_{-\infty}^{t} \exp \left[ -\frac{x^2}{2\sigma_i^2} \right] dx, \quad t \in \mathbb{R}. \]  

One can then write the characteristics of the system components in the form:

- probability density of the component uptime
  \[ f_i(t) = \frac{1}{\sigma_i} f_i \left( \frac{t - T_i}{\sigma_i} \right), \quad t \in \mathbb{R}, \]  
- reliability of the component
  \[ R_i(t) = 1 - F_i \left( \frac{t - T_i}{\sigma_i} \right) \]  
- failure intensity of the component
  \[ \lambda_i(t) = \sigma_i \left[ 1 - F_i \left( \frac{t - T_i}{\sigma_i} \right) \right] \]  

In case one cannot accept the assumption that the probabilities P[τ<0] are negligibly small, one should use the truncated normal distribution, at which time the fault-free operation of the component takes only nonnegative values \( \tau \geq 0 \)

In this case, the reliability characteristics of elements has the form:

- probability density of the component uptime
  \[ f_i(t) = \frac{1}{\sigma_i} f_i \left( \frac{t - T_i}{\sigma_i} \right), \quad t \geq 0, \]  
- reliability of the component
  \[ R_i(t) = 1 - F_i \left( \frac{t - T_i}{\sigma_i} \right) = F_i \left( \frac{T_i}{\sigma_i} \right) \]  
- failure intensity of the component
  \[ \lambda_i(t) = \sigma_i \left[ 1 - F_i \left( \frac{t - T_i}{\sigma_i} \right) \right], \quad t \geq 0. \]  

**Logarithmo-normal distribution**

Logarithmo-normal distribution in reliability theory on the basis of the empirical research characterizes metal components safe fatigue life, the strength of metals subjected to prolonged operation stress, as well as electronic components up time.

The component \( \tau \) up time has logarithmo-normal distribution when the random variable \( Y=\ln(\tau) \) is normally distributed with the parameters \( N(T_i,\sigma_i) \). Using the probability density and distribution function of the normal distribution \( N(0,1) \) component reliability characteristics of logarithmo-normal distribution can be written as:

- probability density of the component uptime
  \[ f_i(t) = \frac{1}{t \sigma_i \sqrt{2\pi}} \exp \left[ -\frac{(\ln(t) - T_i)^2}{2\sigma_i^2} \right], \quad t > 0, \]  
- reliability of the component
  \[ R_i(t) = 1 - F_i \left( \frac{\ln(t) - T_i}{\sigma_i} \right) = F_i \left( \frac{T_i}{\sigma_i} \right) \]  
- failure intensity of the component
  \[ \lambda_i(t) = \sigma_i \left[ 1 - F_i \left( \frac{\ln(t) - T_i}{\sigma_i} \right) \right] / F_i \left( \frac{T_i}{\sigma_i} \right). \]  
- the expected up time of the component
  \[ E[\tau_i] = \exp \left( T_i + \frac{\sigma_i^2}{2} \right). \]  

**CHARACTERISTICS OF THE DISTRIBUTIONS OF TWO-ELEMENT PARALLEL TECHNICAL SYSTEMS**

Here the analysis of \( n \)-element system with a parallel reliability structure is presented. The same designations, which have been defined in the previous section, will be used. Since the elements are independent, and the system
is working flawlessly until the damage of all the components:
– the up time distribution is
\[
F(t) = P_{[s < t]} = P_{[\tau_1, \tau_2, \ldots, \tau_n < t]} = \prod_{i=1}^{n} F_i(t),
\]
\[F(t) = \prod_{i=1}^{n} F_i(t),\]  
(27)

– the system reliability
\[R(t) = 1 - \prod_{i=1}^{n} F_i(t),\]  
(28)

– probability density of the system up time
\[f(t) = \sum_{i=1}^{n} f_i(t) \prod_{j \neq i} F_j(t),\]  
(29)

Failure intensity of the system has the form
\[\lambda(t) = \frac{\sum_{i=1}^{n} f_i(t) \prod_{j \neq i} F_j(t)}{1 - \prod_{i=1}^{n} F_i(t)}\]  
(30)

The expected up time of the system with parallel reliability structure is
\[T = E[T] = \int_0^\infty \left[1 - \sum_{i=1}^{n} F_i(t)\right] dt\]  
(31)

The equation (31) shows that it is rarely possible to calculate the expected up time of the system in the explicit form. Even for simple distributions the expected up time of the system is quite complicated. In a particular case, all components of the system have the same up time distributions. This happens usually when several components perform one and the same function.

To perform it one component is sufficient, therefore, the remaining elements are not reserving and in that case often \(F_i(t) = F(t)\) for \(i = 1, 2, \ldots, n\). Then for a system with a parallel structure consisting of identical components reliability characteristics have the form:
– the distribution function of the system up time
\[F(t) = F_1(t),\]  
(32)

– the system reliability
\[R(t) = 1 - F_1(t) = 1 - (1 - R_1(t)),\]  
(33)

– probability density of the system up time
\[f(t) = n f_1(t) F_1^{-1}(t),\]  
(34)

– failure intensity of the system
\[\lambda(t) = \frac{n f_1(t) F_1^{-1}(t)}{1 - F_1(t)},\]  
(35)

– the expected up time of the system
\[T = E[T] = \int_0^\infty \left[1 - F_1(t)\right] dt\]  
(36)

The following reliability characteristics of systems with a parallel two-element structure and different types of components up time distributions have been determined. The order of components is arbitrary, it does not matter for the dependence.

The first component has the up time of the exponential distribution with the parameter \(\lambda\), and the second – of the Weibull distribution with the parameters \((\alpha, \beta)\). Reliability characteristics of the system take the form:
– the distribution function of the system up time
\[F(t) = \left(1 - e^{-\beta t}\right) F_0\left(\frac{t}{\beta}\right)\]  
(37)

– the system reliability
\[R(t) = 1 - \left(1 - e^{-\beta t}\right) F_0\left(\frac{t}{\beta}\right) = e^{-\lambda t} + e^{-\beta t} - e^{-\lambda t + \beta t},\]  
(38)

– probability density of the system up time
\[f(t) = \lambda e^{-\lambda t} \left(1 - e^{-\beta t}\right) + \alpha \beta t e^{-\lambda t} \left(1 - e^{-\beta t}\right) = \lambda e^{-\lambda t} + \alpha \beta t e^{-\lambda t} - \left(\lambda + \alpha \beta t\right) e^{-\lambda t + \beta t},\]  
(39)

– failure intensity of the system
\[\lambda(t) = \frac{\lambda e^{-\lambda t} + \alpha \beta t e^{-\lambda t} - \left(\lambda + \alpha \beta t\right) e^{-\lambda t + \beta t}}{e^{-\lambda t} + e^{-\beta t} - e^{-\lambda t + \beta t}},\]  
(40)

The first component has the up time of the exponential distribution with the parameter \(\lambda\), and the second – of the Weibull distribution with the parameters \((T, \sigma)\). Reliability characteristics of the system take the form:
– the distribution function of the system up time
\[F(t) = \left(1 - e^{-\lambda t}\right) F_0\left(\frac{t}{\sigma}\right)\]  
(41)

– the system reliability
\[R(t) = 1 - \left(1 - e^{-\lambda t}\right) F_0\left(\frac{t}{\sigma}\right),\]  
(42)

– probability density of the system up time
\[f(t) = \lambda e^{-\lambda t} F_0\left(\frac{t}{\sigma}\right) + \frac{1}{\sigma} \left(1 - e^{-\lambda t}\right) f_0\left(\frac{t}{\sigma}\right),\]  
(43)

– failure intensity of the system
\[\lambda(t) = \frac{\lambda e^{-\lambda t} F_0\left(\frac{t}{\sigma}\right) + \frac{1}{\sigma} \left(1 - e^{-\lambda t}\right) f_0\left(\frac{t}{\sigma}\right)}{1 - \left(1 - e^{-\lambda t}\right) F_0\left(\frac{t}{\sigma}\right)}\]  
(44)

The first component has the up time of the exponential distribution with the parameter \(\lambda\), and the second – of the logarithm-normal distribution with the parameters \((T, \sigma)\). Reliability characteristics of the system take the form:
– the distribution function of the system up time
\[F(t) = \left(1 - e^{-\lambda t}\right) F_0\left(\frac{t}{\sigma}\right) I t \geq 0,\]  
(45)
the system reliability
\[
R(t) = 1 - \left(1 - e^{-\beta t}\right) F_0\left(\frac{\alpha + T}{\sigma}\right),
\]
(46)
probability density of the system up time
\[
f(t) = \lambda e^{-\beta t} F_0\left(\frac{\alpha + T}{\sigma}\right) + \frac{1}{\alpha} \left(1 - e^{-\beta t}\right) f_0\left(\frac{\alpha + T}{\sigma}\right),
\]
(47)
failure intensity of the system
\[
\lambda(t) = \frac{\lambda e^{-\beta t} F_0\left(\frac{\alpha + T}{\sigma}\right) + \frac{1}{\alpha} \left(1 - e^{-\beta t}\right) f_0\left(\frac{\alpha + T}{\sigma}\right)}{1 - \left(1 - e^{-\beta t}\right) F_0\left(\frac{\alpha + T}{\sigma}\right)}
\]
(48)
The first component has the up time of the Weibull distribution with the parameter \((\alpha, \beta)\), and the second – of the normal distribution with the parameters \((T, \sigma)\). Reliability characteristics of the system take the form:

- the distribution function of the system up time
\[
F(t) = \left(1 - e^{-\beta t}\right) F_0\left(\frac{\alpha + T}{\sigma}\right), t \geq 0,
\]
(49)
- the system reliability
\[
R(t) = 1 - \left(1 - e^{-\beta t}\right) F_0\left(\frac{\alpha + T}{\sigma}\right),
\]
(50)
- probability density of the system up time
\[
f(t) = \alpha \beta t e^{-\beta t} F_0\left(\frac{\alpha + T}{\sigma}\right) + \frac{1}{\alpha} \left(1 - e^{-\beta t}\right) f_0\left(\frac{\alpha + T}{\sigma}\right),
\]
(51)
- failure intensity of the system
\[
\lambda(t) = \frac{\alpha \beta t e^{-\beta t} F_0\left(\frac{\alpha + T}{\sigma}\right) + \frac{1}{\alpha} \left(1 - e^{-\beta t}\right) f_0\left(\frac{\alpha + T}{\sigma}\right)}{1 - \left(1 - e^{-\beta t}\right) F_0\left(\frac{\alpha + T}{\sigma}\right)}
\]
(52)
The first component has the up time of the Weibull distribution with the parameter \((\alpha, \beta)\), and the second – of the logarithmo-normal distribution with the parameters \((T, \sigma)\). Reliability characteristics of the system take the form:

- the distribution function of the system up time
\[
F(t) = \left(1 - e^{-\beta t}\right) F_0\left(\frac{\alpha + T}{\sigma}\right), t \geq 0,
\]
(53)
- the system reliability
\[
R(t) = 1 - \left(1 - e^{-\beta t}\right) F_0\left(\frac{\alpha + T}{\sigma}\right),
\]
(54)
- probability density of the system up time
\[
f(t) = \alpha \beta t e^{-\beta t} F_0\left(\frac{\alpha + T}{\sigma}\right) + \frac{1}{\alpha} \left(1 - e^{-\beta t}\right) f_0\left(\frac{\alpha + T}{\sigma}\right),
\]
(55)
- failure intensity of the system
\[
\lambda(t) = \frac{\alpha \beta t e^{-\beta t} F_0\left(\frac{\alpha + T}{\sigma}\right) + \frac{1}{\alpha} \left(1 - e^{-\beta t}\right) f_0\left(\frac{\alpha + T}{\sigma}\right)}{1 - \left(1 - e^{-\beta t}\right) F_0\left(\frac{\alpha + T}{\sigma}\right)}
\]
(56)
The first component has the up time of the normal distribution with the parameter \((T_1, \sigma_1)\), and the second – of the logarithmo-normal distribution with the parameters \((T_2, \sigma_2)\). Reliability characteristics of the system take the form:

- the system reliability
\[
R(t) = 1 - \left(1 - e^{-\beta t}\right) F_0\left(\frac{\alpha + T_1}{\sigma_1}\right),
\]
(57)
- the distribution function of the system up time
\[
F(t) = \left(1 - e^{-\beta t}\right) F_0\left(\frac{\alpha + T_1}{\sigma_1}\right), t \geq 0,
\]
(58)
- the system reliability
\[
R(t) = 1 - \left(1 - e^{-\beta t}\right) F_0\left(\frac{\alpha + T_1}{\sigma_1}\right),
\]
(59)
- probability density of the system up time
\[
f(t) = \frac{1}{\sigma_1} f_0\left(\frac{T_1}{\sigma_1}\right) F_0\left(\frac{T_2}{\sigma_2}\right) + \frac{1}{\alpha} \frac{1}{\sigma_2} F_0\left(\frac{T_1}{\sigma_1}\right) f_0\left(\frac{T_2}{\sigma_2}\right),
\]
(60)
- failure intensity of the system
\[
\lambda(t) = \frac{\frac{1}{\sigma_1} f\left(\frac{T_1}{\sigma_1}\right) F_0\left(\frac{T_2}{\sigma_2}\right) + \frac{1}{\alpha} \frac{1}{\sigma_2} F_0\left(\frac{T_1}{\sigma_1}\right) f_0\left(\frac{T_2}{\sigma_2}\right)}{1 - \left(1 - e^{-\beta t}\right) F_0\left(\frac{T_1}{\sigma_1}\right) F_0\left(\frac{T_2}{\sigma_2}\right)}
\]

CONCLUDING REMARKS

In technical systems, particularly in mechatronic systems, reserving the system components is popular. In the presented material specific examples of components reserving are shown, when the components are not reserved by the objects of the same type, with the same characteristics of reliability, but when the functional reserving by a different component with a different reliability characteristics is used. In case of reserving by the same components with the same failure distributions, the analysis of reliability characteristics is relatively simple and defined by the dependences (32),(35). In other cases it is complex.

REFERENCES

[6] Matuszak Z.: Charakterystyki niezawodnościowe wieloelementowych struktur probability density of the system up time
\[
f(t) = \alpha \beta t e^{-\beta t} F_0\left(\frac{T_1}{\sigma_1}\right) + \frac{1}{\alpha} \left(1 - e^{-\beta t}\right) f_0\left(\frac{T_1}{\sigma_1}\right),
\]
(55)
- failure intensity of the system
\[
\lambda(t) = \frac{\alpha \beta t e^{-\beta t} F_0\left(\frac{T_1}{\sigma_1}\right) + \frac{1}{\alpha} \left(1 - e^{-\beta t}\right) f_0\left(\frac{T_1}{\sigma_1}\right)}{1 - \left(1 - e^{-\beta t}\right) F_0\left(\frac{T_1}{\sigma_1}\right)}
\]
(56)
The first component has the up time of the normal distribution with the parameter \((T_1, \sigma_1)\), and the second – of the logarithmo-normal distribution with the parameters \((T_2, \sigma_2)\). Reliability characteristics of the system take the form:
Management Systems in Production Engineering 3(7)/2012

Z. MATUSZAK — Szczególne charakterystyki niezawodnościowe dwuelementowych równoległych systemów technicznych


dr hab. inż. Zbigniew Matuszak, prof AM
Maritime University of Szczecin
Faculty of Mechanical Engineering
Institute of Ship Power Plant Operation
ul. Wały Chrobrego 1-2, 70-500 Szczecin, POLAND
e-mail: z.matuszak@am.szczecin.pl

Artykuł w polskiej wersji językowej dostępny na stronie internetowej czasopisma.
The article in Polish language version available on the website of the journal