ORIGIN OF CALCITE-CEMENTED HOLOCENE SLOPE BRECCIAS FROM THE DŁUGA VALLEY (THE WESTERN TATRA MOUNTAINS)

Michał GRADZIŃSKI¹, Renata JACH¹ & Ewa STWORZEWICZ²

¹ Institute of Geological Sciences, Jagiellonian University, ul. Oleandry 2a, 30-063 Kraków, Poland, M.G. e-mail: gradzin@ing.uj.edu.pl, R.J. e-mail: jach@ing.uj.edu.pl
² Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, ul. Sławkowska 17, 31-016 Kraków, Poland, e-mail: stworzewicz@isz.pan.krakow.pl

Abstract: New locality of slope breccias was found in the Western Tatras Mts. It occurs in the Długa Valley on a steep slope of ravine beneath the belt of Jurassic radiolarite cliffs. The breccia consists of angular clasts of radiolarite bound with calcite cements. Void spaces between the clasts contain shells of Holocene snails. The cements are built of columnar crystals composed of acicular subcrystals and of skeletal crystals. The crystals grow rapidly from supersaturated solution due to CO₂ degassing. Cementation occurred in vadose conditions in the Atlantic Phase soon after the scree formation.

Key words: slope breccias, calcite cements, radiocarbon dating, Holocene, Tatra Mts.

Manuscript received 17 May 2001, accepted 13 July 2001

INTRODUCTION

Distinctive Quaternary deposits, known as slope breccias, occur in the Western Tatras Mountains. They consist of clasts of local carbonate rocks bound with calcite cements. Such breccias were found in a few small outcrops. They were first reported by Rabowski (1930) from the Miętusia and Mała Łąka Valleys (see also Zawidzka, 1967). Kotański (1954, 1958) found and described other occurrences of slope breccias – in the lower part of the Tomanowa Valley, near the Iwaniacka Pass and near the Beskid Pass, among others. Similar deposits have been reported by GlazeK (1965) from the Lejowa Valley. The hitherto described slope breccias did not include any faunal remains, which precluded their precise dating. Some of the breccias have been considered to be Pleistocene in age, on the grounds of superposition or their present form and location (Kotański, 1958; Zawidzka, 1967). Other ones are Holocene in age, and some of these are possibly still growing (GlazeK, 1965; Kotański, 1979).

Similar breccias, known from the Northern Calcareaous Alps (Ampferer, 1907), and from the Central Carpathians in Slovakia (Ložek, 1960; Ložek & Zrub, 1965; Šavnoch, 1984), are accepted, also on the base of malacofauna, to be interglacial Pleistocene deposits. By analogy, the slope breccias from the Tatra were referred to Holocene or warm phases of Pleistocene (Kotański, 1958; Zawidzka, 1967). It should be stressed, however, that the age of any of the breccias in the Tatras has not been firmly determined, neither palaeontologically nor radiometrically. No studies have been also done into the petrography of their cements or conditions and mechanism of their cementation.

This paper presents the result of a study on the age and formation conditions of the slope breccias found at a new locality, in the Długa Valley (Fig. 1, cf. Gradziński et al., 2000). The locality, found in summer 2000, has not been earlier reported in literature.

LOCATION OF THE BRECCIAS

The Długa Valley is a left-side tributary valley of the Chochołowska Valley. It extends from the state boundary on the west to the Huciska glade in east and is ca. 1700 m long. It begins at a junction of several steep ravines. The whole drainage basin of the Długa valley is incised into carbonate and siliceous rocks of the Križna Nappe, monoclinal dipping to the north (Guzik & Guzik, 1958; Guzik, 1959). Cliffs and steps built of layered Jurassic radiolarites of the Sokolica Radiolarite Formation occur near the mentioned junction of the ravines (Lefeld et al., 1985).

The breccias were found in the southernmost ravine, at an altitude of ca. 1250 m about 1500 m from the mouth of the Długa Valley (Fig. 1). The breccias occur as cemented
rubble, covered with vegetation. The rubble covers the steep left slope of the ravine, directly beneath a belt of Jurassic radiolarite cliffs. The breccias are now being eroded and form small cliffs that locally exceed two metres in height (Fig. 2). Breccia fragments of various size can be found on the bottom of the ravine.

PETROGRAPHY OF THE BRECCIAS

Results

The breccia consists of angular clasts of radiolarites, and subordinate amount of red nodular limestones and light Upper Jurassic limestones. The angular clasts are usually from a few millimetres up to a dozen centimetres in size; exceptionally up to several tens of centimetres. The breccia is clast-supported and lacks fine-grained matrix (Figs 3, 4). Void spaces among the clasts contain snail shells debris. The distribution of the clasts is random and no sedimentary structures were seen in the outcrops.

The cement of the breccias occurs in the form of calcitic crusts on clast surfaces, usually coating the clasts completely. In general, the crusts reduce the void space between
the clasts and constrict the throats between the voids. The
crusts range in thickness from a millimetre to more than
4 mm. Most surfaces of the crusts are smooth, but acicular
terminations of calcite crystals are sometimes visible with a
naked eye.

The calcitic crusts are devoid of macroscopic voids,
though they are fairly laminated. The lamination is marked
by alternation of dark and light laminae, the latter being usu-
ally thicker. The laminae are subparallel to the surfaces of
the encrusted clasts. Near the contacts between adjacent
clasts the laminae are usually bent, and the crust forms
bridges of meniscus cements (Fig. 5; cf. Dunham, 1971).
Locally, the laminae on undersides of clasts are thicker and
form microstalactites, characteristic of gravitational ce-
ments (cf. Müller, 1971). No structures characteristic for
pedogenic conditions have been observed, such as rhizoids,
rhizocretions or alveolar septal structures (cf. Tucker &
Wright, 1990, p. 344).

Examination under transmitted-light microscope and
scanning electron microscope (SEM) has shown that the ce-
ments in the crusts consist of: (i) columnar calcite crystals,
(ii) micritic calcite, (iii) non-carbonate admixture. It should
be noted that no structures of organic origin have been
found.

The columnar calcite crystals form compact laminae. In-
dividual crystals are up to 1 mm in high and are triangular
in sections perpendicular to their c axes (Figs 6, 7). The
number of crystals often decreases with increasing distance
from the nucleation surface, which means that they com-
peled for free growth space (Bathurst, 1975, p. 422). Their
terminations are often flat (Fig. 6), but at some places acute
terminations are visible (Fig. 7). The terminations are often
uniform within one cavity, that is all crystals in one cavity
have acute terminations and flat in another. No traces of
crystal corrosion have been found.

Observations in SEM indicate that many columnar cal-
cite crystals consist of strongly elongated, acicular subcrysts,
twinned along the c axis (Fig. 8). The SEM observa-

Fig. 5. Internal structure of breccia, meniscus cement joining
adjacent clasts and voids filled with silt are visible, thin section, H
nicos

Fig. 6. Columnar calcite crystals, note competitive crystal
growth pattern and flat crystal terminations (arrows), thin sections,
X nicos

Fig. 7. Columnar calcite crystals growing inside snail shell,
note competitive crystal growth pattern and acute crystal termina-
tions, thin section, X nicos

Fig. 8. Columnar crystals built of needle shaped subcrystals,
SEM image
tions revealed also the presence of skeletal crystals of calcite (Fig. 9). They have only outer faces developed and grow successively from the faces inwards. Such crystals originate when outer faces grow faster than cores (Jones & Renaut, 1996).

Calcite micrite often occurs in the described crusts as laminae of variable thickness, covering the columnar calcite crystals. Alternation of micrite laminae and laminae built of acicular calcite crystals imparts the distinctive, macroscopic lamination to the crusts. Calcite micrite is also lining the lower parts of many cavities. It forms then characteristic concentrations, crescentic in cross-section. Calcite micrite has not been found within snail shells.

The described crusts include sporadic fine quartz grains and homogenous dark peloidal aggregates. The agglomerates consist of clustered and bound silicate and iron oxide grains. Both the agglomerates and the quartz grains are detritic admixtures, incorporated into the calcitic cements.

Interpretation

The habits and fabrics of calcite in the cements of the breccias are comparable to those in various freshwater carbonate cements, including speleal calcites. The competitive growth of columnar calcite crystals proves that the crystals are primary, not transformed by diagenetic processes (Bathurst, 1975; González et al., 1992). The columnar crystals, composed of distinct acicular subcrystals, and the skeletal crystals are a result of rapid crystal growth from highly supersaturated solution (Given & Wilkinson, 1985; González et al., 1992; Jones & Renaut, 1996).

The crystals with flat terminations grew in solution film of limited thickness. Such crystals originate at the air-water interface when lateral growth is forced, which results in flat termination, while acute termination can not form (cf. Broughton, 1983; Kostecka, 1993; Gradziński et al., 1997). Microstalactitic cement present in the breccias, is also related to vadose conditions.

Calcite micrite was most probably brought in by percolating water, deposited in the cavities and then incorporated into the calcite crusts. This micrite is hence a specific kind of internal sediment, similar to crystal silt, defined by Dunham (1969) and typical of vadose diagenetic environments. Such micrite may come from destruction of older carbonate rocks that built the breccias or from cements that crystallised earlier, though its genetic relation to biogenic processes can not be ruled out (cf. Jones & Kahle, 1995).

The described features indicate vadose cementation of the breccias. Phreatic conditions existed locally within the breccias, as prove the crystals with acute terminations. Such crystals grow from water films thicker than those from which grow the crystals with flat terminations (Kostecka, 1993; Gradziński et al., 1997). The occurrence of these crystals on roofs of cavities is evidence of complete filling of the cavities with water, that is of local occurrence of perching phreatic conditions. The onset of phreatic conditions was probably related to episodes of intense water supply and possibly resulted from systematic decrease in permeability of the breccias, related to the decrease in size of cavities and constricting of the throats by progress in cementation.

MALACOFAUNA

The breccia includes sporadic snail shells. Most of them occur as small broken fragments. The shells are cemented together with the limestone rubble and, as the least mechanically resistant component, break during sampling. A few relatively well preserved specimens could be identified as *Bradybaena fruticum* (Müller), *Chilostoma cf. faustinum*
SLOPE BRECCIAS FROM DLUGA VALLEY (TATRA MTS)

Fig. 11. Cross plot diagram showing stable isotope composition of calcite cements

(Rossnässler, *Discus rudatus* (Ferrusae) and *Eucobresia nivalis* (Draparnaud) (Fig. 10).

All these species occur recently in the Tatra (Dyduch-Falniowska, 1988, 1991) and are also known from Holocene deposits, including calcareous tufas from Podhale (Alexandrowicz, 1997). *Ch. faustinum* was also reported from a Holocene tufa fan in the Kraków cleft in the Tatra (Alexandrowicz, 1988). It should be noted that *D. rudatus* was especially common in Podhale in the Preboreal and Boreal Phases, and is known also from the Allerød Phase. The snails found in the breccia could be supplied to their present location in the scree together with the rubble, could be washed by water, but they could also dwell cavities within the surficial layer of scree. *D. rudatus* is now reported from such settings (Dyduch-Falniowska, 1991).

STABLE ISOTOPE COMPOSITION OF THE CEMENTS

A sample of ca. 20 mg of calcitic cements was separated under binocular microscope. Values of $\delta^{13}C$ and $\delta^{18}O$ of carbonates were determined using measurements made with mass spectrometer SUMY, at the Institute of Geological Sciences, Academy of Sciences of Belarus at Minsk. The carbonate samples were treated with 100% orthophosphoric acid. Carbon dioxide was then collected in a trap with liquid nitrogen and purified in vacuum. Measurement error (single standard deviation, $\pm1\sigma$) was $\pm0.2\%$. Stable isotope ratios in carbonate samples are presented in this paper in reference to the PDB standard. The $\delta^{13}C$ values of the studied cements fall within the range -6.8 to -5.4, and the values of $\delta^{18}O$ within the range -8.6 to -7.2 (Fig. 11). The obtained stable isotope ratios for oxygen are similar to the ratios from various freshwater carbonates.

The stable isotope ratio in calcite depends on the ratio of these isotopes in water and temperature of crystallisation. This relation is described by the formula presented by O’Neil et al. (1969) and modified by Friedman and O’Neil (1977). Using this formula and the $\delta^{18}O$ values of modern waters of the Tatra, given by Rozanski and Dulinski (1988), it may be demonstrated that cements with this isotope composition could form in the Tatra under the present climatic conditions. They could also form in other temperature range if the crystals grew in non-equilibrium conditions, for example because of the high crystallisation rate (cf. Chaetxyz & Lawrance, 1994).

The $\delta^{13}C$ values in the studied breccias indicate a marked enrichment in the light carbon isotope (^{12}C), indicative of vegetation during crystallisation of the cement (cf. Cerling, 1984; Baker et al., 1997). These values generally fall within the range typical of carbonates precipitated from solutions rich in CO$_2$, related to metabolism of C3 plants, characteristic of the temperate climatic zone. A slight shift in the analysed samples towards the heavier isotope compositions may be due to: kinetic fractionation effects during crystallisation of the cements, CO$_2$ degassing preceding crystallisation or a significant admixture of atmospheric CO$_2$ (cf. Cerling, 1984; Dulinski & Rozanski, 1990; Baker et al., 1997). The elevated $\delta^{13}C$ values may be also due to admixture of carbonate detritus from the substrate rocks, incorporated into the cements. The detritus would have the $\delta^{13}C$ value of ca. -1%, so measured together with the cement precipitated from water would shift the $\delta^{13}C$ value towards the higher values.

AGE OF THE BRECCIAS

A sample of cements, of ca. 50 g, was separated under binocular microscope. It was then cleaned, ground and baked in 450°C. Measurements of radiocarbon activity were made using liquid scintillation counter LKB 1211 PACK BETA at the Institute of Geological Sciences, Academy of Sciences of Belarus at Minsk (sample IGSB 737). The radiocarbon date was calculated following the recommendations by Stuiver and Polach (1977). The obtained date is 5430 ±130 BP. The cement sample was also dated using the Th/U method. The obtained date is <19 000 BP (Dr Helena Hercman, personal information, 2000). This age is open due to a significant admixture of detritic thorium.

The obtained radiocarbon age of the cement should be considered as approximate only. The studied sample included the whole thickness of the calcitic crusts, so the age is averaged over all laminae. The true age of every lamina may markedly depart from the obtained average value (cf. Pustovoytov, 1998). The date may be also too old because of incorporation of “dead” carbon in older, detritic calcite material. Moreover, the precision of the obtained date could be influenced by variable concentration of $^{14}CO_2$ in soil (Wang et al., 1994).
MECHANISM OF BRECCIA CEMENTATION

Mechanisms that may lead to near-surface cementation of coarse-grained Quaternary sediments include: increase in ion concentrations during freezing of water (Vogt & Corte, 1996), evaporation (Bunting & Christensen, 1980), diffusion of carbon dioxide from solution due to equilibration of concentrations (Pentecost & Viles, 1994) and biological activity (Jones & Kahle, 1985).

Some features of the described cements, such as alternation of laminae composed of micrite and those of columnar calcite crystals, resemble cements forming in cryogenic environments (Vogt & Corte, 1996). Cements in cryogenic environments usually form only beneath large clasts, as pendants or cutans (Courty et al., 1994; Vogt & Corte, 1996; Pustovoytov, 1998) or as calcite crusts below active glaciers (Souchez & Lemmens, 1985). Distribution of cements in the described breccia and its general setting distinguish it definitely from the deposits listed above. Also the stable isotope ratios in the studied cements differ from those known from cryogenic calcites. The latter are enriched in the light oxygen isotope due to strong kinetic fractionation of oxygen isotopes upon freezing of water (Jouzel & Souchez, 1982), which results in enrichment in the lighter isotope of the remaining water and, consequently, of the crystallising calcite (e.g., Sharp et al., 1990; Fairchild et al., 1993). Also stable isotopes of carbon are fractionated during crystallisation of cryogenic calcites (Clark & Lauriol, 1992). Calcite formed in such conditions has extremely high values of δ¹³C, up to +17.0‰. However, the δ¹³C and δ¹⁸O of the studied cements are typical of freshwater carbonates and do not display the anomalies described above. This excludes freezing phenomenon as a factor controlling crystallisation of the studied cements. The above conclusion agrees well with the radiocarbon age of the cements, which relates their formation to the Holocene warm phase. It may be supposed, however, that despite of this, the influence of evaporation on precipitation of the cement was negligible, as the oxygen isotope ratios do not display features indicative of evaporation, that is they are not shifted towards the higher values (Epstein & Mayeda, 1953).

Another mechanism that could cause precipitation of the calcium carbonate cements of the studied breccias could be equilibration of CO₂ concentrations between the solution and atmosphere. This process is important in calcareous tufts, especially near springs and at high-gradient rapid streams, where increased flow turbulence favours increased degassing of water (e.g., Szule, 1983; Mertz-Preiß & Rieding, 1999). The topography of the studied breccia locality excludes the second possibility. It seems likely that the scree whose cementation led to the formation of the described breccia, was supplied with water from nearby seepages. It may be accepted that water was flowing as a thin film over the clast surfaces, outgassing the dissolved carbon dioxide through diffusion due to the gradient of temperature or pressure. Calcite cement was precipitated in a consequence. Petrographic similarity of the studied cements to speleancalcs, which form mainly by equilibrating of CO₂ pressure between water and cave atmosphere, corroborates this interpretation.

The last mechanism to be discussed is the biogenic consumption of CO₂. This mechanism is considered one of the main factors in the growth of calcareous tufas (e.g., Julia, 1983; Szule, 1983; Pedley, 1992). In contrary to many calcareous tufas, the carbonate crusts cementing the described breccias lack any biogenic structures. This suggests a negligible role of organisms in precipitation of the calcium carbonate cements. It should be noted, however, that growth of calcium carbonate crystals around biocalcified microbial cells is a known phenomenon (Guo & Riding, 1994; Szule & Smyk, 1994. When this is the case, cementation results in obliteration of primary biogenic features of the sediment. Such situation could occur during cementation of the studied breccias, especially as the cementation was taking place in conditions of low energy of flow, which favours growth of various microbial structures (cf. Pedley, 1992). Moreover, the calcified moss, debris of higher plants or algal encrustations, typical of calcareous tufas, could form only at the outer surface of the breccias and this could be removed by erosion.

CONDITIONS OF BRECCIA CEMENTATION

The presented facts and interpretations provide basis for a reconstruction of the conditions of the breccia cementation. The distribution of the breccia indicates that it formed by cementation of rubble composed of rocks that are cropping out around the place. The scree cover was supplied with water from small seepages situated higher on the slope. The seeping water was rich in Ca²⁺ and HCO₃⁻ ions. The calcium ions might come from dissolution of both, Jurassic limestones and radiolarites, as the latter include up to 30% of calcium carbonate (Krajewski & Myszka, 1958, p. 223). The δ¹³C values found in the carbonate cements are indicative of rich vegetation cover during the rugged cementation (cf. Cerling, 1984). The vegetation controlled the amount of CO₂ in water and, in consequence, the possibility of water to dissolve calcium carbonate. Thus, the water became oversaturated with respect to calcite. When such water infiltrated the porous scree, it lost dissolved carbon dioxide. This in turn, resulted in precipitation of calcite cements and formation of the breccia.

Though the lack of structures typical of pedogenic environments in the studied breccias testifies to the lack of permanent plant cover on the scree surface, the stable isotope ratios in the cements suggest that relatively rich vegetation was present nearby (see above). This indicates that processes of cementation preceded the succession of plants encroaching on the freshly formed scree cover, that is they occurred rather shortly after the scree formation.

Precipitation of the calcite cements was not limited to specific horizons, which is in contrast with other cemented Quaternary sediments described from the temperate climate zone (Jorgensen, 1974; Aber, 1979; Strong et al., 1992). The closest analogue are the surface-cemented rudites noted by Pentecost (1993) and Pentecost and Viles (1994). Most deposits described from the Central Carpathians, which are
Pleistocene cemented scree covers (Lożeck & Zaruba, 1965), differ from breccia described here with the presence of greater amount of cement derived from erosion of terra rosa. This fact was interpreted as indicative of climate and, by implication, of the time of the breccia formation (Lożeck & Zaruba, 1965), but it seems that this may also depend on local setting. Other slope breccias in the Tatra, and some of the breccias from Slovakia (see e.g., Šávruoç, 1984) are similar to the one described here, but a comparison of their detailed petrographical and geochemical characteristics would be helpful.

The radiocarbon age of cements in the studied breccia indicates that its cementation has taken place in the Atlantic Phase of the Holocene, that is during the intensified growth of calcareous tufas in Poland (Pazdur et al., 1988) and in Europe (Goudie et al., 1993). The subsequent increase in climate humidity at the break of the Atlantic and Subboreal Phases, recorded in peatbogs and other sediments in the Podhale region (Obidowicz, 1990; Alexandrowicz, 1997) resulted probably in intense fluvial erosion and destruction of the earlier cemented breccias.

CONCLUSIONS

1. The breccias found in the Długa Valley are deposits of cemented scree cover composed of locally derived clasts. Cementation occurred soon after the scree formation.
2. The main mechanism of cementation was CO2 degassing due to pressure contrast; the role of biogenic consumption of CO2 seems negligible.
3. The cementation of the breccias has taken place in vadose conditions, in a way similar to that of spelean calcite formation.
4. Cementation of the breccias took place in the Atlantic Phase of the Holocene.

Acknowledgements

Described breccias were found during the field work financed by the State Committee for Scientific Research – grant 6PO4D 082 19 (to R.J.). The authorities of the Tatrański Park Narodowy are gratefully acknowledged for providing the permission for field work. The authors wish to thank Jadwiga Faber for operating the SEM, Marek Doktor for taking the photographs and Mariusz Szelerewicz for preparing the figures. M.G. is supported by the Foundation for Polish Science (Prof. J. Kazmierczak Grant for Researchers). Joachim Szule and an anonymous reviewer are thanked for their constructive suggestions.

REFERENCES

Folia Quaternaria, 68: 7–132.

SLOPE BRECCIAS FROM DŁUGA VALLEY (TATRA MTs)

Streszczenie

GENEZA HOLOCEŃSKICH BRECCJI ZBOCZOWYCH Z DOLINY DŁUGIEJ (TATRY ZACHODNIE)

Michał Grądziński, Renata Jach & Ewa Stworewicz

W Tatrach Zachodnich występują specyficzne czwartorzędowe otwory zwane breccjami zbożowymi lub stokowymi (Kołański, 1958). Są one zbudowane z klastów lokalnych skał weglanowych i spojone kalcytowymi cementami. Jak dotychczas nie został precyzyjnie określony wiek tych osadów, nie były też prowadzone badania dotyczące petrograficznych cech cementów spajających te breccje, jak i warunków i mechanizmów zachodzenia procesów cementacji.

Nowe stanowisko breccji zbożowych zostało zlokalizowane w górnej części Doliny Długiej na wysokości ok. 1250 m n.p.m. (Fig. 1). Breccje są obecnie erozowane i tworzą niewielkie skałki o wysokościach miejscami przekraczającej 2 m (Fig. 2). Są one zbudowane z ostrogruziastych klastów radiolarytów, czyli pochodzących z materiału lokalnego. Klasty tworzą zwarte szkielet ziarnowy nowej breccji, a pomiędzy nimi znajduje się puste przestrzenie (Fig. 3, 4). Rozmieszczenie klastów jest chaotyczne. Klasty są spojone kalcytowymi cementami.

Badania w mikroskopie petrograficznym i w skanowym mikroskopie elektronowym wykazały, że cementy są zbudowane z: kolumnowych krystalów kalcytu, mikrytu kalcytowego i domieszek nieweglanołowych (Fig. 5–7). Kolumnowe krystalsa wyrastały z różnych grubości filmu wodnego pokrywającego klasty, natomiast mikryt kalcytowy i domieszki detrytyczne były nanoszone przez wodę perkolacyjną i inkorporowane w obręb wrażających cementów. Pęknięć i wiązba kalcytowych cementów spajających dyskutowane breccje jest analogiczna jak różnorodnych weglanołowych cementów tlękowodnych jak np. speleean calcites. Wzrost kolumnowych krystalów kalcytu w sposób konkurencyjny dowodzi, że krystaly te są pierwotnymi, a nie przekształconymi przez procesy diagenetyczne (Bathurst, 1975; González et al., 1992). Budowa krystalów kolumnowych z wyraźnych subkrystalów o iklowym pokroju dowodzi ich krystalizacji w warunkach znacznego przezrzeniowania roztworów (Fig. 8; Given & Wilkinson, 1985; González et al. 1992). O takich warunkach świadczą również krystalsa szkieletowe (Fig. 9; Jones & Renault, 1996). Powyższe fakty wskazują na szybki wzrost krystalów kalcytu. Cechy części cementów jak: płaskie zakończenia krystalów, obecność cementu meniskowego i stalaktytowego świadczą, że cementacja breccji zachodziła w warunkach wadycych ponad zwierciadłem wód gruntowych. Podkreślić trzeba, że nie zostały stwierdzone jakiekolwiek struktury pochodzenia organicznego, ani struktury związane z cementacją w warunkach pedogenicznych.

W obrębie breccji występują sporadyczne skorupy słimaków (Fig. 4). Większość z nich to jedynie niewielkie, pokruszone fragmenty. Skorupy są cementowane wraz z gumeną, jako najmniej odporny mechanicznie element, pękają podczas pobierania prób. Kilka lepiej zachowanych okazów udało się zidentyfikować jako: Bradybaena fruticrum, Chloristoma cf. faustinum, Discus ruderatus i Ecsobresia nivalis (Fig. 10). Wszystkie powyższe gatunki współcześnie występują w Tatrach. Ch. faustinum był notowany również z holocenońskiego stożka martwicowego w Wąwozie Kraków (Alexandrowicz, 1988). Natomiast wszystkie stwierdzone w dyskutowanych breccjach gatunki zostały opisane z holocenońskich osadów, w tym martwic wapiennych Podhala (Alexandrowicz, 1997). Stwierdzono w breccji ślimaki mogą być nanoszone na piarą razem z gremium skalnym, namięзванym przez wodę, a D. ruderatus mógł także zasiedlać punkty pomiędzy klastami w przypowierzchniowej części piargu budzącego breccję. W takich miejscach jest on stwierdzany współcześnie w Tatrach (Dyudych-Faleniwska, 1991).

Wartości δ13C badanych cementów mieszczą się w przedziale od -6.8 do -5.4, a wartości δ18O w przedziale -8.6 do -7.2 (wartości podane vs PDB; Fig. 11). Otrzymane stosunki izotopów trwałych tlenu z badanych cementów są zbliżone do analogicznych wartości z różnorodnych tlękowodnych weglanów. Analogiczne wartości cechowałyby współcześnie powstające weglany w Tatrach, przy założeniu równowagowego frakcjonowania izotopów tlenu w trakcie krystalizacji. Natomiast stosunki izotopów trwałych węgla wskazują na znaczną domieszkę leżączej izotopy węgla -12C pochodzącego z glebowego CO2 związanego z wegetacją typu C3 (cf. Cerling, 1984; Baker et al., 1997). Pomierzone wiek radiowęglowy (nr lab. IGSB - 737) cementów wynosi 5430 ±130 lat BP.

Cechy petrograficzne cementów i sytuacja przestrzenna breccji świadczą, że są to osady cementowanego piargu złożonego z klastów lokalnego materiału. Mechanizmem powodującym cementację było przede wszystkim odgazowanie CO2 na skutek różnic ciśnien; rola biogenicznej konsumpcji CO2 i parowania wody wydaje się być znikiem. Cementacja breccji przebiegała w warunkach wadycych w sposób analogiczny do powstania speleean calcites i zachodziła w okresie atlantyckim.