DZIADZIO P. S., GAŹDZICKA E., PLOCH E., SMOLEŃ J., BIOSTRATIGRAPHY AND SEQUENCE STRATIGRAPHY OF THE LOWER CRETACEOUS IN CENTRAL AND SE POLAND – DISCUSSION

Sylwester MAREK, Anna RACZYŃSKA & Krzysztof LESZCZYŃSKI* 

*Państwowy Instytut Geologiczny, ul. Rakowiecka 4, 00-975 Warszawa; *e-mail: krzysztof.leszczyński@pgi.gov.pl

Dziadzio et al. (2004) made a revision of the uppermost Jurassic and Lower Cretaceous stratigraphy in boreholes drilled along the south-western boundary of the Plock and Lublin Trough and in the Carpathian Foreland, using the sequence stratigraphic method. These authors suggest a different model of the geological structure of the region from that previously assumed for the north-eastern slope of the Giełniów – Holy Cross Mts area bounded by deep fault zones of Nowe Miasto – Iłża (SW–NE) and Nowe Miasto – Grójec (NW–SE) (Hakenberg & Świadowska, 1977; Żeliowski, 1972, 1979; Fig. 1).

According to the previous views on the geological structure of the margins of the Holy Cross Mts and the adjoining Lublin region (between Magnuszew and Radom), an elevation in topography, showing uplifting trends from Berriasian (late Volgian) through early Valanginian times, existed in this area at the Jurassic/Cretaceous transition (Marek, 1968, 1983a, b; Niemczycka, 1976a, b). The Radom – Magnuszew area was subjected to strong erosion during the Berriasian and early Valanginian, which resulted in the removal of part of Kimmeridgian, Tithonian, Berriasian and Lower Valanginian deposits (Niemczycka & Brochwiecz-Lewiński, 1988; Gutowski, 1998; Kutek, 1994). The late Valanginian sea transgressed north-eastwards onto a flat Upper Jurassic surface, reaching the line Wilga – Izdebnio – Ciepielów (Fig. 1). The Hauterivian sea continued the transgressive trend. Subsequently, the Radom area became uplifted and the Middle Albian sea transgressed onto the Lower Hauterivian, Valanginian and even Kimmeridgian basement (Cieśliński & Pożarski, 1970). Such a history of the evolution of the Radom – Magnuszew area during late Jurassic and early Cretaceous times is inferred from both analyses of drillcores and a correlation of well logs from several tens of deep boreholes and a number of shallow ones drilled in the NE margin of the Holy Cross Mts (Malinowska, 1970; Krassowska (ed.), 1973, 1977; Niemczycka (ed.), 1974, 1975; Witkowski, 1966; Dąbrowska, 1957).

According to Dziadzio et al. (2004), borehole sections from the north of the Lublin region indicate stratigraphic continuity, spanning the Upper Jurassic and Lower Cretaceous interval, and thus the lack of stronger diastrophicism resulting in denudation processes affecting uppermost Kimmeridgian through Lower Valanginian rocks. The spectacular example of the concept is stratigraphy from the Białobrzegi IG 1 borehole. Part of the section, previously considered the Lower Kimmeridgian, was assigned by these authors to the Tithonian, Berriasian, Valanginian and Hauterivian, whereas Upper Valanginian and Hauterivian deposits were identified as Barremian and Aptian–Albian (Fig. 2).

In the Radom – Magnuszew area, Upper Jurassic deposits are represented by marls and limestones, commonly oolitic and organo-deritoid with conglutinates of shells and coquinas composed of molluscs and gastropods with subordinate crinoids and echinoids. Conglutinates of *Exogyra*, *Lopha* and *Cucullea* oyster shells are especially important as stratigraphic indicators. According to Pugaczewska (1971), *Exogyra virgula* (Dutr.) is known from the Kimmeridgian and Tithonian; however, it is most frequent in Kimmeridgian deposits of both Poland and Europe (Karczewski, 1965; Karczewski in: Krassowska (ed.), 1977). In the more complete Upper Jurassic sections from the margins of the Holy Cross Mts, similar deposits are documented by Kimmeridgian guide ammonites (Kutek, 1968, 1969; Malinowska, 1970; Malinowska (ed.), 1988). Apart from macrofaunal evidence, Kimmeridgian age of the deposits has also been proved by microfaunal data; drillcore samples from the Białobrzegi IG 1 borehole (depth interval 1061.3–1062.7 m) contain foraminifers and ostracods of early Kimmeridgian age (Bielecka, in: Krassowska (ed.), 1977).

The overlying Upper Valanginian deposits from the depth of 958.0–933.0 m (25-m-thick cored interval; Fig. 2) are represented by claystones and marly mudstones with occasional sandstone interbeds. The rocks contain abundant mollusc shells and fragments of ammonites found at the depths of 952.1 m, 952.5 m and 952.0 m (Marek, in: Krassowska (ed.), 1977; Marek, 1983c). These are guide ammonites of the genus *Dichotomites* (Fig. 3A–G). It is worth noting that Upper Valanginian ammonites of *Saynoceras verrucosum* d’Orbigny and *Prodichotomites complanus* (Koenen) were also found at Krzyżanowice near Iłża (Wis-
Foraminifers and ostracods from Białobrzegi IG 1, analysed by Sztejn (Krassowska ed., 1977), and represented by specimens such as *Epistomina cretosa* Ten Dam, *Epistomina caracolla caracolla* (Roemer), *Lenticulina nodosa* (Reuss), *Conorboides hofkeri* (Bart & Brand), *Vagnulinina medicarinata* Ten Dam, *Protocythere hechti* Triebel and *Mandocythere frankei* Triebel, also indicate early Valanginian age. The latter species is very characteristic of Upper Valanginian deposits.

A similar microfaunal assemblage is also cited by Smoleń (Dziadzio et al., 2004; fig. 13) from the Białobrzegi IG 1 borehole. However, it is accompanied by *Gavelinella barremiana* Bettenstedt indicating, according to that author, that the deposits are of Barremian–Aptian age.

The overlying series from the depth of 933.0–921.0 m (12 m thick), originally included in the Lower Hauterivian, is represented by claystones and mudstones with an intervening sandstone bed (Fig. 2). Infrequent and poorly preserved bivalves were found in the upper portion of this cored interval. However, the most important are ammonite specimens from the depths of 924.8 m, 925.5 m and 925.9 m, which most likely represent the genus *Endemoceras* (Fig. 3H–L; Marek, in: Krassowska (ed.), 1977). From that interval, Smoleń (Dziadzio et al., 2004) cited the foraminifers of *Gyroidinoides aff. infracretaceus*, *Hedbergella infracretacea* and *Gavelinella barremiana*, typical in cited author’s opinion, of the Barremian and Aptian. Also nanoplankton zones (Zones 10–13) prove, according to Gaździcka (Dziadzio et al., 2004), Barremian–Aptian age of these rocks.

Putting aside the problem of stratigraphical dating of the Głowaczów Formation (lacking of ammonites; Niem-
czycka, 1976a, b; 1978), which is considered Kimmeridgian in the Bílobrzegi IG 1 borehole, the most controversial issue is the suggested stratigraphic position of the overlying Bílobrzegi and Włocławek formations containing fragments of ammonites (Marek & Raczyńska, 1979; Marek, 1983a, 1988; Leszczyński, 1997; Marek & Pajchlowa (ed.), 1997). A considerable objection should be raised as to including of deposits containing fragments of Dichotomites ammonites to the Barremian–Aptian, on the basis of microfaunal and nannoplanktonic studies and the ammonite-based stratigraphy whose importance seems to be irrefutable (Fig. 3A–G).

Also controversial is the concept that the overlying sequence with poorly preserved fragments of ammonites, representing most likely the genus Endemoceras indicative of early Hauterivian age, belongs to the Aptian and Albian. Not only microfaunal and nannoplankton determinations were the basis for such a conclusion; furthermore, the ammonite found at the depth of 925.9 m (Fig. 3I–L) and reported as Endemoceras (ex gr. noricum-enode) was now re-identified to be Lower Aptian Deshayesites sp. (Dziadzio

Fig. 2. Lower Cretaceous in the Bílobrzegi IG 1 borehole: lithology and stratigraphy
The state of preservation of the specimen, in particular of its ventral surface, prevents unambiguous identification. However, relief of its side, especially sigmoi dally curved ribs (not observed in Deshayesites specimens), suggests that this is a Lower Hauterivian ammonite of the genus *Endemoceras*. In addition, the presence of ventral knobs and thus of a ventral furrow is more probable than the lack of the features. Hauterivian age of this sequence is also indicated by its position immediately above Upper Valanginian deposits containing *Dichotomites* fauna. It is worth noting that single ammonite specimens of presumed Aptian–Albian age were found in much younger beds of the Goplo Member (Mrozek, 1975; Marek, 1977, 1983c; Raczyńska, 1979; Marek & Raczyńska, 1979). The sequence stratigraphic method, employed by Dziazdżo et al. (2004) and based on interpretation of well logs supported by biostratigraphic data, undoubtedly provides a more reliable correlation scheme of sequence boundaries, especially higher-order ones, and thus producing a model of sedimentary basin evolution over large areas. However, if the sedimentary basin is locally subjected to stronger tectonic activity and variable subsidence rate, there is an increased risk of correlating sequences of different ages. It should also be borne in mind that, on the one side, various
lithologies may generate similar record on well logs but, on the other side, similar lithologies can repeatedly appear along the section. The principal problem is the sharp discrepancy between the stratigraphy based on ammonites typical of the Boreal Province and the results of investigations of calcareous nanoplankton distinctive of the Tethyan stratigraphic schemes. It should be stressed that pelagic and free-swimming ammonites always have an advantage over passive and sea current-transported nanoplankton.

REFERENCES


