Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | [Z] 56, 5-6 | 417-447
Tytuł artykułu

Rozpoznawanie anionów

Warianty tytułu
Anion recognition
Języki publikacji
The article deals with the anion recognition. The aim of this review was to stress that the anion recognition is becoming more and more rapidly expanding field of the ion recognition and modern chemistry in general. First, the general characteristic of the anions was given, including the size, shape, pH dependence and hydration. These parameters were compared with the respective ones for cations. The importance of the anions for the biological processes was shown on some most representative examples, like inorganic phosphate ions. The biological mechanisms of the "arginine fork", and phosphate/sulfate recognition selectivity were used to show the importance of hydrogen bonding. The synthetic cycle of the ATP exemplified the uniqueness of the rotary synthesis based on anion recognition [24]. The discovery of the mechanism of the rotary synthesis was awarded the Nobel Prize in chemistry in 1997. The biological membranes and their role in the ion recognition (binding and transportation) were briefly introduced. The most spectacular examples of the molecular recognition were compared with the current achievements of supramolecular chemists. Starting from the pioneering work of Park and Simmons to the very recent dendrimeric structures, the anion receptors were reviewed. The authors were not trying to introduce any artificial classification of receptors, because in most of the cases at least two types of non-covalent interactions participate in the recognition process. The usefulness of this approach was discussed on the example of polyammonium receptors recognizing the anions by inseparable electrostatic and H-bonding interactions. The following groups of receptors were described: guanidinium, polyamines/polyammonium, metaloorganic (tin, boron, mercury, ferrocenium, cobaltocenium), metal complexes, porphyrines, expanded porphyrines (saphyrines), calix[n]arenes, catenane, cyclodextrine, and gold nanoparticles.
Słowa kluczowe

Opis fizyczny
schem., bibliogr. 70 poz.
  • Katedra Chemii Analitycznej, Wydział Chemiczny Politechniki Warszawskiej ul. Noakowskiego 3, 00-664 Warszawa
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.