Nowa wersja platformy jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | R. 84, nr 1 | 18-28
Tytuł artykułu

Wpływ par metali na spawanie łukowe, Cz. 1

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
EN
The effects of metal vapour in arc welding, Part 1
Języki publikacji
PL
Abstrakty
PL
Opary metaliczne powstają w procesie spawania przez odparowanie roztopionego metalu w jeziorku spawalniczym, a w przypadku spawania łukowego MAG (gaz-metal) - także w drucie elektrody i kroplach. Obecność oparów może mieć znaczny wpływ na właściwości łuku oraz wielkość i kształt jeziorka spawalniczego. W artykule opisano wcześniejsze prace na temat powstawania i transportu oparów metalicznych w łuku spawalniczym, zwłaszcza mających związek ze spawaniem łukowym MAG oraz TIG. Przedstawiono wpływ oparów metalicznych na termodynamikę, transport oraz właściwości promieniowania plazmy. Wpływ oparów na rozkład temperatury, gęstość natężenia prądu oraz strumień ciepła w łuku, zostały zbadane pod względem właściwości termofizycznych. Porównane zostały także różne sposoby podejścia do dyfuzji oparów metalicznych w plazmach oraz powstawanie oparów z ciekłego metalu. Wzięto także pod uwagę powstawanie dymów spawalniczych w wyniku nukleacji i późniejszej kondensacji oparów. Podano też zalecenia dotyczące tematów wymagających dalszych badań.
EN
Metal vapour is fromed in arc welding processes by the evaporation of molten metal in the weld pool, and in the case of gas-metal arc welding, in the wiere electrode and droplets. The presence of metal vapour can have a major influence on the properties of the arc and the size and shape of the weld pool. Previous experimental and computational works on the production and transport of metal vapour in welding arcs, in particular those relevant to gas-metal arc welding and gas-tungsten arc welding, are reviewed. The influnce of metal vapour on the thermodynamic, transport and radiative properties. Different approaches to treating diffusion of metal vapour in plasmas, and the production of vapour from molten metal, are compared. The production of welding fume by the nucleation and subsequent condensation of metal vapour is considered. Recommendations are presented about subject requiring further investigation, and the requirements for accurate computational modelling of welding arcs.
Wydawca

Rocznik
Strony
18-28
Opis fizyczny
Bibliogr. 84 poz., il.
Twórcy
  • CSIRO Materials Science and Engineering, Australia
Bibliografia
  • [1] Norrish J.: Advanced Welding Processes, Bristol: Institute of Physics Publishing, 1992.
  • [2] Murphy A.B., Tanaka M., Tashiro S., Sato T., Lowke J.J.: A computational investigation of the effectiveness of different shielding gas mixtures for arc welding, J. Phys. D: Appl. Phys. 42 115205, 2009.
  • [3] Olsen H.N.: The electric arc as a fight source for quantitative spectroscopy, J. Quant. Spectrosc. Radiat. Transfer 3 305-33, 1963.
  • [4] Murphy A.B., Farmer A. J.D., Haidar J.: Laser-scattering measurement of temperature profiles of a free-burning arc, Appl. Phys. Lett 60 1304-6,1992.
  • [5] Tanaka M., Lowke J J.: Predictions of weld pool profiles using plasma physics, J. Phys. D: Appl. Phys. 40 R I-24, 2007.
  • [6] Lister G.G., Lawler J.E., Lapatovich W.P, Godyak V.A.: The physics of discharge lamps Rev. Mod. Phys. 76 541-98, 2004.
  • [7] Shigeta M., Watanabe T: Multi-component co-condensation model of Ti-based boride/silicide nanoparticle growth in induction thermal plasmas, Thin Solid Films 515 4217-27, 2007.
  • [8] Murphy A.B.: Formation of titanium nanoparticles from a titanium tetrachloride plasma, J. Phys. D: Appl. Phys. 37 2841-7 2004.
  • [9] Ashfold M.N.R., Claeyssens F., Fuge G.M., Henley S.J.: Pulsed laser ablation and deposition of thin films, Chem. Soc. Rev. 3323-31,2004.
  • [10] Russo R.E., Mao X.L, Liu H.C., Gonzalez J., Mao S.S.: Laser ablation in analytic chemistry a review, Talanta 57 425-51,2002.
  • [11] Blades M.W., Caughlin B.L., Walker Z.H., Burton L.L.: Excitation, ionization, and spectral-line emission in the inductively coupled plasma, Prog. Anal. Spectrosc. 10 57-109,1987.
  • [12] Hieftje G., Huang M., Lehn S., Warner K., Gamez G., Ray S., Leach A.: Towards a fuller understanding of analytical atomic spectroscopy, Anal. Sci. 181185-9, 2002.
  • [13] Beauchemin D.: Inductively coupled plasma mass spectrometry, Anal, Chem. 80 4455-86,2008.
  • [14] Chevrier P., Fievet P., Ciobanu S.S., Fleurier C., Scarpa P.: Study of the arc-electrode interaction in a SF6 self-blast circuit breaker, J. Phys. D: Appl. Phys, 32 1494-502,1999.
  • [15] Zhang J.L., Yan J.D., Fang M.T.C.: Electrode evaporation and its effects on thermal arc behavior, IEEE Trans. Plasma Sci. 321352-61,2004.
  • [16] Lee J.C., Kim Y.J.: The influence of metal vapors resulting from electrode evaporation in a thermal puffer-type circuit breaker, Vacuum 81 875-82,2007.
  • [17] Rong M., Ma Q., Wu Y., Xu T., Murphy A. B.: The influence of electrode erosion on the air arc in a low-voltage circuit breaker J. Appl. Phys, 106 023308, 2009.
  • [18] Nielsen T., Kaddani A., Zahrai S.: Modelling evaporating metal droplets in ablation controlled electric arcs, J. Phys. D: Appl. Phys. 34 2022-31, 2001.
  • [19] Yang F., Rong M., Wu Y., Murphy A.B., Pei J., Wang L., Liu Z., Liu Y: Numerical analysis of the influence of splitter-plate erosion on an air arc in the quenching chamber of a low-voltage circuit breaker, J. Phys. D: Appl. Phys. 43 434011,2010.
  • [20] Knight R., Smith R., W., Apelian D.: Application of plasma-arc melting technology to processing of reactive metals, Int. Mater. Rev. 36 221-52, 1991.
  • [21] Heberlein J., Murphy A.B.: Thermal plasma waste treatment, J. Phys. D: Appl. Phys. 41 053001, 2008.
  • [22] Murphy A.B., Farmer A.J.D.: Temperature measurement in thermal plasmas by laser scattering, J. Phys. D: Appl. Phys. 25634-43,1992.
  • [23] Dzierżęga K., Zawadzki W., Pokrzywka B., Pellerin S.: Experimental investigations of plasma perturbation in Thomson scattering applied to thermal plasma diagnostics, Phys. Rev. E 74 026404, 2006.
  • [24] Rahmane M., Soucy G., Boulos M.I.: Analysis of the enthalpy probe technique for thermal plasma diagnostics, Rev. Sci. Instrum. 66 3424-31,1995.
  • [25] Swank W.D., Fincke J.R., Haggard D.C.: Modular enthalpy probe and gas analyzer for thermal plasma measurements, Rev. Sci. Instrum. 64 56-62, 1993.
  • [26] Kühn G., Könemann R, Kock M.: 2D display of tungsten impurity in a free-burning arc using laser-induced fluorescence, J. Phys. D: Appl. Phys. 35 2096-104, 2002.
  • [27] Terasaki H., Tanaka M., Ushio M.: Effects of metal vapor on electron temperature in helium gas tungsten arcs, Metall. Mater. Trans. A 33 1183-8, 2002.
  • [28] Griem H.R.: Plasma Spectroscopy, New York: McGraw-Hill, 1964.
  • [29] Murphy A.B.: Electron heating in the measurement of electron temperature by Thomson scattering: are thermal plasmas thermal?, Phys. Rev. Lett. 89 025002. 2002.
  • [30] Gregori G., Kortshagen U., Heberlein J., Pfender E.: Analysis of Thomson scattering light from an arc plasma jet, Phys. Rev. E 65 046411,2002.
  • [31] Murphy A.B.: Thomson scattering diagnostics of thermal plasmas: laser heating and the existence of local thermodynamic equilibrium, Phys. Rev. E 69 016408, 2004.
  • [32] Haidar J.: Non-equilibrium modelling of transferred arcs, J. Phys. D: Appl. Phys. 32 263-72, 1999.
  • [33] Pokrzywka B., Musioł K., Pellerin S., Pawelec E., Chapelle J.: Spectroscopic investigation of the equilibrium state in the electric arc cathode region, J. Phys. D: Appl. Phys. 29 2644-9,1996.
  • [34] Dzierżęga K., Pokrzywka B., Chapelle J.: Investigations of the cathode region of an argon arc plasma by degenerate four-wave mixing laser spectroscopy and optical emission spectroscopy, J. Phys. D: Appl. Phys. 37 1742-9, 2004.
  • [35] Jenista J., Heberlein J. V. R., Pfender E.: Numerical of the anode region of high-current electric arcs, IEEE Trans. Plasma Sci. 25 883-90,1997.
  • [36] Rat V., Murphy A.B., Aubreton J., Elchinger M-F., Fauchais P.: Treatment of non-equilibrium phenomena in thermal plasma flows, J. Phys. D: Appl. Phys. 41 183001, 2008.
  • [37] Cram L.E., Poladian L., Roumeliotis G.: Departures from equilibrium in a free-burning argon arc, J. Phys. D: Phys. 21 418-25,1998.
  • [38] Haddad G.N., Farmer A. J.D.: Temperature determinations a free-burning arc: I Experimental-techniques and results argon, J. Phys. D: Appl. Phys. 17 1189-96,1984.
  • [39] Drawin H-W.: Spectroscopic measurements of high temperatures (A review), High Pressures-High Temperatures 2 359-409,1970.
  • [40] Richter J.: ÜberTemperaturmessungen an thermischen Plasmen bekannter Zussamensetzung Z., Astrophys, 61 57-66, 1965.
  • [41] Pellerin S., Musioł K., Pokrzywka B., Chapelle J.: Investigation of a cathode region of an electric arc, J, Phys, D: Appl. Phys. 27 522-8,1994.
  • [42] Zielińska S., Musioł K., Dzierżęga K., Pellerin S., Valensi F., de Izarra C., Briand F.: Investigations of GMAW plasma by optical emission spectroscopy, Plasma Sources Sci. Technol. 16832-8, 2007.
  • [43] Torres J., Jonkers J., van der Sande M.J., van der Mullen J.J.A.M., Gamero A., Sola A.: An easy way to determine simultaneously the electron density and temperature in high-pressure plasmas by using Stark broadening, J, Phys, D; Appl. Phys. 36155-9, 2003.
  • [44] Rouffet M.E., Wendt M., Goett G., Kozakov R. Schoepp H., Weltmann K.D. Uhrlandt D.: Spectroscopic investigation of the high-current phase of a pulsed GMAW process, J. Phys. D: Appl. Phys. 43 434003, 2010.
  • [45] Wilhelm G., Goett G., Schoepp H., Uhrlandt D.; Study of the welding gas influence on a controlled short-arc GMAW process by optical emission spectroscopy, J. Phys. D: Appl. Phys. 43 434004, 2010.
  • [46] Valensi F., Pellerin S., Boutaghane A., Dzierżęga K., Zielińska S., Pellerin N., Briand F.: Plasma diagnostic in gas metal arc welding by optical emission spectroscopy, J, Phys. D: Appl. Phys. 43 434002, 2010.
  • [47] Tomassini P., Giulietti A.: A generalization of Abel inversion to non-axisymmetric density distribution, Opt. Commun, 199 143-8,2001
  • [48] Franceries X., Freton P, Gonzalez J-J., Lago F., Masquere M.: Tomographic reconstruction of 3D thermal plasma systems: a feasibility study, J. Phys. D: Appl. Phys. 38 3870-84, 2005.
  • [49] Zielińska S., Pellerin S., Valensi F., Dzierżęga K., Musioł K., de Izarra C., Briand F., Eur. Phys. J. Appl. Phys. 43 111-22, 2008.
  • |50] Goecke S.F., Metzke E., Spille-Kohoff A., Langula M.: ChopArc. MSG-Lichtbogenschweissen frden Ultraleichtbau, Stuttgart: Fraunhofer IRB Verlag, 2005.
  • [51] Mirapeix J., Cobo A., Conde O. M., Jauregui C., Lopez-Higuera J. M.: Real-time arc welding defect detection technique by means of plasma spectrum optical analysis, NDT&E Int. 39 356-60, 2006.
  • [52] Alfaro S.C.A., Mendonca D.D., Matos M.S.: Emission spectrometry evaluation in arc welding monitoring system, J. Mater. Process. Technol. 179 219-24, 2006.
  • [53] Bouaziz M., Gleizes A., Razafinimanana M.: Departures from equilibrium near the copper anode of an argon transferred arc, J. Appl. Phys. 84 4128-36,1998.
  • [54] Rahal A. M., Rahhaoui B., Vacquie S.: Copper vapour diffusion in a nitrogen arc chamber, J. Phys. D: Appl. Phys. 17 1807-22, 1984.
  • [55] Rahal A.M., Rahhaoui B., Vacquie S.: A study of the copper vapour flux from the anode in a nitrogen arc, J. Phys. D: Appl, Phys. 21 904-8,1988.
  • [56] Andanson P, Cheminat B.: Contamination d’un plasma d’argon par des vapeurs anodiques de cuivre, Rev. Phys, Appl. 14775-82,1979.
  • [57] Cheminat B., Gadaud R., Andanson P.: Vaporisation d'une anode en argon dans le plasma d'un arc electrique, J. Phys. D: Appl. Phys, 20 444-52,1987.
  • [58] Adachi K., Inaba T., Amakawa T.; Voltage of wall-stabilized argon arc injected with iron powder, Proc. 10th Int. Symp. Plasma Chernistry ed U Ehlemann et al paper 1.3-10, Bochum. Germany, 4-9 August 1991.
  • [59] Murphy A.B.: Demixing in free-burning arcs, Phys. Rev. E 55 7473-94, 1997.
  • [60] Razafinimanana M., El Hamadi L., Gleizes A., Vacquie S.: Experimental study of the influence of anode ablation on the characteristics of an argon transferred arc, Plasma Sources Sci. Technol, 4 501-10,1995.
  • [61] Etemadi K., Pfender E,: Impact of anode evaporation on the anode region of a high-intensity argon arc, Plasma Chem. Plasma Process. 5 175-82,1985.
  • [62] Akbar S., Etemadi K.: Impact of copper vapor contamination on argon arcs, Plasma Chem. Plasma Process. 17 251-62, 1997.
  • [63] Gonzalez J.J.; Bouaziz M., Razafinimanana M., Gleizes A.: The influence of iron vapour on an argon transferred arc, Plasma Sources Sci. Technol. 6 20-8,1997.
  • [64] Farmer A.J.D., Haddad G.N.: Rayleigh scattering measurements in a free-burning arc, J. Phys. D: Appl. Phys. 21 426-31,1988.
  • [65] Farmer A J.D., Haddad G.N., Cram L.E.: Temperature determinations in a free-burning arc; III. Measurements with molten anodes, J. Phys, D: Appl. Phys. 19 1723-30,1986.
  • [66] Tanaka M., Heberlein J.V.R., Watanabe T.: Initiation of anode material evaporation in a transferred arc device, Proc. 19th Int. Symp. Plasma Chemistry ed A von Keudell et al paper P 1.1.19, Bochum, Germany, 26-31 July 2009.
  • [67] Ton H.: Physical properties of the plasma-MIG welding arc, J. Phys. D: Appl. Phys. 8 922-33,1975.
  • [68] Lancaster J.F, (ed): The Physics of Welding (1984), Oxford: Pergamon, s, 191-2.
  • [69] Smars E. A., Acinger K., Sipek L.: Temperature in argon shielded welding arc with iron electrodes, Document No. 212-191-70, International Institute of Welding (1970).
  • [70] Smars E.A., Acinger K.: Material transport and temperature distribution in arc between melting aluminium electrodes, Document No 212-162-68, International Institute of Welding, 1968.
  • [71] Goecke S.F.: Auswirkungen von Aktivgaszumischungen im vpm-Bereich zu Argon auf das MIG-Impulsschweissen von Aluminium PhD Thesis, Technical University Berlin, 2004.
  • [72] Schnick M., Füssel U., Hertel M., Haessler M., Spille-Kohoff A., Murphy A.B.: Modelling of gas-metal arc welding taking into account metal vapour, J. Phys. D: Appl. Phys. 43 434008, 2010.
  • [73] Zielińska S., Pellerin S., Dzierżęga K., Valensi F., Musioł K., Briand F.: Measurement of atomic Stark parameters of many Mn I and Fe I spectral lines using GMAW process, J. Phys. D: Appl. Phys. 43 434005, 2010.
  • [74] Snyder S.C., Reynolds L.D., Shaw C.B., Kearney R.J.: Gas temperatures in an atmospheric thermal plasma-jet at large radii from Rayleigh lineshape measurements, J. Quant. Spectrosc. Radiat. Transfer 46 119-24, 1991.
  • [75] Snyder S.C., Lassahn G.D, Reynolds L.D.: Direct evidence of departure from local thermodynamic-equilibrium in a free-burning arc-discharge plasma, Phys. Rev. E 48 4124-7,1993.
  • [76] Snyder S.C., Bentley R.E.: A measurement of axial velocity and temperature in a free-burning arc using Thomson scattering, J. Phys. D: Appl. Phys. 29 3045-9,1996.
  • [77] Snyder S.C., Murphy A.B., Hofeldt D.L, Reynolds L.D.: Diffusion of atomic hydrogen in an atmospheric-pressure free-burning arc discharge, Phys. Rev. E 52 2999-3009,1995.
  • [78] Larjo J., Walewski J., Hernberg R.: Atomic hydrogen concentration mapping in thermal plasma chemical vapour deposition, Appl, Phys. B: Lasers Opt. 72 455-64, 2001.
  • [79] Boogaarts M.G.H., Mazouffre S., Brinkman G. J., van der Heijen H.W.P., Vankan P, van der Mullen J.A.M., Schram D.C., Dobele H.F.: Quantitative two-photon laser-induced fluorescence measurements of atomic hydrogen densities, temperatures, and velocities in an expanding thermal plasma, Rev. Sci, Instrum. 73 73-86, 2002.
  • [80] Snyder S.C., Lassahn G.D., Grandy J.D.: Direct determination of gas velocity and gas temperature in an atmospheric-pressure argon-hydrogen plasma jet, J. Quant. Spectrosc. Radiat. Transfer 107 217-25, 2007.
  • [81] Van Lessen M., Schnabel R., Kock M.: Population densities of Fe l and Fe II levels in an atomic beam from partially saturated LIF signals, J. Phys. B: At Mol. Opt. Phys. 31 1931-46, 1998.
  • [82] Arsov V., Frank K.: influence of the lifetime of the laser-excited level and the laser pulse duration on the saturated LIF signal during the prebreakdown phases of a pseudospark discharge, IEEE Trans. Plasma Sci. 33 1294-306, 2005.
  • [83] Lins G., Hartmann W.: Measurement of the radial metal vapor distribution in a pseudospark switch, J. Phys. D: Appl. Phys. 28 1588-93,1995.
  • [84] Murphy A.B.: Thermal plasmas in gas mixtures, J. Phys. D: Appl. Phys. 34 R151 -73, 2001.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BTB5-0010-0031
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.