Rozproszone systemy sterowania DCS

Prof. dr hab. inż. Leszek Trybus

e-mail: ltrybus@prz.rzeszow.pl

Streszczenie
Dokonano przeglądu aktualnych cech dziewięciu rozproszonych systemów sterowania firmy ABB, Siemens, Emerson, Metko i Alstom. Przegląd obejmuje architектurę ogólną, stacje procesowe, komunikację, inżynierię, podsystemy operatora i informacyjny. Przedstawiono tabele porównawcze.

Abstract
Current features of nine distributed control systems from ABB, Siemens, Emerson, Metko and Alstom are reviewed. The review includes architecture, control stations, communications, engineering, operator and information subsystems. Comparison tables are provided.

Słowa kluczowe: systemy sterowania, komunikacja, informacja.

Keywords: control systems, communications, information.

1. Wprowadzenie
W tabeli 1 wymieniono największe systemy DCS (Distributed Control Systems) stosowane obecnie w Polsce. Aktualny poziom techniczny jest wynikiem ich 20..30-letniego rozwoju. Melody IT i AC 800 M są sprzetowymi wariantami systemu 800xA ABB wydzielającego się w przemyśle. Teleperm XP, Ethernet, Cnet i ControlNet są systemami redukowalnymi dla energetyki (symbole IT, XP itd. będą opisane). Pozostałe systemy służą do uniwersalnych zastosowań, ale Emerson i Metko występują również w wielkich elektrowniach.

W niniejszym artykule dokonano krótkiego przeglądu podstawowych cech wymienionych systemów. Nieco więcej informacji można znaleźć w referacie [2].

Tab. 1. Systemy DCS i producenci

<table>
<thead>
<tr>
<th>DCS</th>
<th>Producent</th>
<th>Kraj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melody IT</td>
<td>ABB Hartmann–Braun</td>
<td>Niemcy</td>
</tr>
<tr>
<td>Teleperm XP</td>
<td>Siemens</td>
<td>Niemcy</td>
</tr>
<tr>
<td>Ovation</td>
<td>Emerson Westinghouse</td>
<td>USA</td>
</tr>
<tr>
<td>Experion PKS</td>
<td>Honeywell</td>
<td>USA</td>
</tr>
<tr>
<td>MetsoDNA</td>
<td>Metso Automation</td>
<td>Francja</td>
</tr>
<tr>
<td>AC 800M</td>
<td>ABB AlfaLaval</td>
<td>Szwecja</td>
</tr>
<tr>
<td>PCS 7</td>
<td>Siemens</td>
<td>Niemcy</td>
</tr>
<tr>
<td>DeltaV</td>
<td>Emerson Fisher–Rosemount</td>
<td>USA</td>
</tr>
<tr>
<td>Alstom P320</td>
<td>Alstom Power</td>
<td>Francja</td>
</tr>
</tbody>
</table>

2. Architektura ogólna
Każdy system DCS składa się z czterech podsystemów: procesowego, inżynierskiego, operatora oraz zarządzania informacją. Przykładową architekturę Ovation pokazano na rys. 1. Stacje komunikują się przelączanymi redundantnym Ethernetem TCP/IP (100 Mb/s; 1 Gb/s ma pojawić się wkrótce).

Tab. 2. Sieci sterujące systemów DCS

<table>
<thead>
<tr>
<th>Sieci</th>
<th>DCS</th>
<th>Mb/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Przełączany</td>
<td>Teleperm, Ovation, Metso, Ethernet</td>
<td>AC 800M, PCS 7, DeltaV, Alspa</td>
</tr>
<tr>
<td>Cnet</td>
<td>Melody</td>
<td>2</td>
</tr>
<tr>
<td>ControlNet</td>
<td>Experion</td>
<td>5</td>
</tr>
</tbody>
</table>

Rys. 1. Przykładowa architektura systemu Ovation - Emerson Westinghouse (blok energetyczny 225 MW)

Sieci komunikacyjne. W systemach DCS stosowane są trzy podstawowe sieci: - sterująca, operatora i polowa. Przełączany Ethernet jest zawsze siecią operatorową i, jak widać z tab. 2, przeznacza się do celów sterujących. Sieci te mogą być zrealizowane fizycznie jako pojedyncza sieć, w której podział logiczny wynika z ruchu. Widać to na rys. 1, gdzie przełączniki root rozdziela ruchy między warstwą dolną a górną.

W przypadku pierscieniowania, w ciągu którego komunikacja zostaje nawiązana po przełączeniu, nie przekracza 0,3 s. Hierarchiczne redundantne drzewo wymaga przenoszenia 1 s, ponieważ przełączniki muszą być tak rekonfigurowane, aby nowe sieci były komunikacyjnie nie zawierały pętli. Umożliwiają to protokoły UpLink Fast - Cisco, RNRD - ABB, FTE - Honeywell oraz RNRD nowego standardu IEEE 801.w (Rapid Spanning Tree Protocol).

3. Stacje procesowe
Wspólne cechy stacji procesowych są następujące:
- pojedyncza stacja obsługuje 1 000 do 3 000 wej/wy (wejścia/wyjścia),
- CPU, zasilacze i interfejsy komunikacyjne są zawsze redundantne,
- moduły (karty) można wymieniać „pod napięciem”;
- moduły we/wy izoluje się od obiektu; zasilacze i magistralne komunikacyjne są izolowane,
- przerwanie komunikacji modułu z CPU powoduje podtrzymanie ostatnich wartości lub ustawienie skonfigurowanych wartości bezpiecznych.

Cykle i zadania. Podane jest w tab. 3. Jak widać, najkrótsze cykle są zrębem milisekund. W Telepermie ze względu na długi cykl szybki
kie sterowanie logiczne realizują moduły inteligentne (nowy system TXP PLUS ma przejmą CPU z PCS 7). Dowolna liczba zadań oznacza, że podstawowe zadanie procesora inkrementuje liczniki zegarowe (np. n x 100 ms). Gdy licznicz osiąga wartość cyklu następuje aktywacja przyporządkowanych do niego programów sterowania.

Moduły we/wy. Oprócz cech podanych wyżej charakteryzuje je:
- przetwarzanie „na karcię” obejmujące filtrację, linearyzację, korekcję temperaturową, monitorowanie przekroczeń,
- autodiagnosticsa wykrywająca przerwę lub zwarcie w obwodzie, drgania lub „zawieszenie” styków,
- moduły inteligentne funkcjonujące jako regulator PID, sterow- nik napędów, mini-PLC.

Stemplowanie czasowe. 1 ms rozdzielczości zdarzeń wymaga- ne przez energetykę zmusza do sterowania sygnału „w źródle”, tj. najlepiej w module wejściowo-wyjściowym albo przynajmniej w CPU. Wy- gląda to faktycznie następująco:
- moduły wejść binarnych Melody, Teleperm i Metso prowadzą schemat czasowy,
- moduły SOE (Sequence of Events) stosowane w innych systemach rejestrują we własne pamięć sekwencję zmian wejść biharnych; jest ona potem odczytywana przez CPU i przesyłana do serwera,
- wejścia analogowe nie zmieniają się gwałtownie, więc stemplują ją CPU (w Alspie podsystem operatorski).

Odbiornik GPS dołączony do stacji master dostarcza informacji o aktualnym czasie, która co 10...60 s jest rozsyłana po systemie. Problemem pozostaje jednak osiągnięcie 1 ms dokładności synchronizacji pomiędzy stacjami. Latwiej jest to uzyskać w architekturze pierścieniowej (pkt. 2). Architektura drzewiasta ogranicza na ogół dokładność do 2...3 ms.

Tab. 3. Cykle obliczeń i liczby zadań
Tab. 3. Calculation cycles and number of tasks

<table>
<thead>
<tr>
<th>DCS</th>
<th>Zakres cyklu</th>
<th>Liczba zadań</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melody</td>
<td>10 ms – 2900 h</td>
<td>16</td>
</tr>
<tr>
<td>Teleperm</td>
<td>100 ms – 30 s</td>
<td>dowolna</td>
</tr>
<tr>
<td>Ovation</td>
<td>10 ms – 30 s</td>
<td>5</td>
</tr>
<tr>
<td>Experion</td>
<td>5, 10, 20, 50, 100 ms</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>50, 100, 200, 500 ms, 2s</td>
<td></td>
</tr>
<tr>
<td>Metso</td>
<td>n > 10 ms</td>
<td>dowolna</td>
</tr>
<tr>
<td>AC 800M</td>
<td>min. 2 ms</td>
<td>16</td>
</tr>
<tr>
<td>PCS 7</td>
<td>1 ms – 60 s</td>
<td>dowolna</td>
</tr>
<tr>
<td>DeltaV</td>
<td>100, 200, 500 ms</td>
<td>10</td>
</tr>
<tr>
<td>Alspa</td>
<td>10 – 900 ms</td>
<td>dowolna</td>
</tr>
</tbody>
</table>

4. Otwarta komunikacja

Aparatura obiektowa. Do konfiguracji, parametryzacji, kalibra- cji i diagnostyki przetworów inteligentnych, siłowników, falowników itp. służą protokoły HART, Proibus, FF (Foundation Field- bus) i WIFIP. W tab. 4 podano, które z nich oraz jakie oprogramowanie są stosowane w konkretnym systemie.

Standardowe magistrale polowe. Jak widać z tab. 5, Proibus przeważa w systemach europejskich, a FF w amerykańskich. Za wyjątkiem Ovation i Metso, pierwsza sposób podanych magistral służy do komunikacji ze stacjami oddalonymi (np. ControlNet w Expertion). Ovation stosuje Ethernet (10 Mb/s), a Metso albo Ethernet albo RS-485.

RS-485 i Ethernet. Interfejsy te służą do obsługi niestan- dardowych protokołów stosowanych w sterownikach turbin i generatorów, starszych PLC itp. Przykładami takich protokołó- w są:
- RS-485: Modbus, 3964R, MPI, Allen-Bradley, Comli, SAI, Omron, Hitachi, HIMA, Profsafe,
- Ethernet: Modbus TCP/OFC, FP-HSE, IEC 870, ABB Insum, GE Mark, Profinet, Ethway.

Jednak za wyjątkiem powszechnego Modbusa nie wszystkie z tych protokołów są dostępne w każdym systemie.

OPC. Jest to standardowy protokół ethernetowy stosowany do wymiany danych między systemami DCS. Na daną w OPC składa się wartość, stempel czasowy i kod jakości. **OPC Data Access** Alsty zawiera trzy interfejsy obsługiwane co 200, 400 i 800 ms (rys. 2).

Siec biurowa. Połączenie umożliwia oddzienny komputer lub ro- utzer z funkcją firewall (DLS Data Link Server) na rys. 1). Udostępniają one interfejsy ODBC, OLE DB i OPC. Ponieważ typową aplikacją kliencką jest Excel, więc częste są bezpośrednie interfej- sy Excel-add-in. Narzędzia Web Services są jeszcze jedną drogą dostępu do danych (pkt. 7).

5. Inżynieria

Podsystemy inżynierskie mają architekturę klient-serwer z bazą danych podanymi w tab. 6.

Moduł sterujący. Pojedynczy schemat FBD złożony z kilku do kilkunastu bloków funkcyjnych (czasem więcej), bądź sekwencją SFC, jest podstawową jednostką oprogramowania nazywa- naną przeważnie modulem sterującym (control module; Program Organization Unit w IEC). Moduł sterujący jest związany z konkretnym urządzeniem technologicznym.
Edytor sprzętu. Automatyczne rozpoznawanie zainstalowanych modułów we/wy (autoensing), a nawet stacji stopniowo się upowszechnia (np. DeltaV, Metso). Komunikacja między stacjami jest konfigurowana automatycznie gdy wiadomo, gdzie generowane są poszczególne zmienne.

Symulacja. Uzupełnieniem testowania przez symulację wejść są modele obiektów zbudowane z bloków funkcyjnych. W większości systemów dostępne są ponadto specjalizowane narzędzia do budowy modeli za pomocą zestawu bibliotek (bilansowej, termodynamicznej itp.). Przykładem może być Shadow Plant Experion, Mi- mic DeltaV, WinSim Alspa.

Urchamianie. Ladowanie aplikacji i uruchamianie przeprowadza się stopniowo dla kolejnych modułów sterujących. W PCS 7 nazywa się to *Configuration in Run*, a w Experion *On-Process Migration*. Do uruchamiania on-line służą dynamiczne schematy FBD i sieci SFC, na których podawane są aktualne wartości oraz statusy sygnałów i kroków. Zmiany oprogramowania są możliwe na poziomie modułów. Przód załadowaniem zmodyfikowanego modułu właściwie wyjście obiektowe i wejścia do innych modułów są ustawiane na ostatnie wartości, aby zapewnić bezuderzenio-wość.

Tab. 5. Standardowe magistrale polowe systemów PCS 7

<table>
<thead>
<tr>
<th>DCS</th>
<th>Magistrale polowe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melody</td>
<td>Profibus</td>
</tr>
<tr>
<td>Teleperm</td>
<td>Profibus, AS-i</td>
</tr>
<tr>
<td>Ovation</td>
<td>FF</td>
</tr>
<tr>
<td>Experion</td>
<td>ControlNet, DeviceNet, FF, Profibus</td>
</tr>
<tr>
<td>Metso</td>
<td>Profibus, AS-I, FF</td>
</tr>
<tr>
<td>AC 800M</td>
<td>Profibus, FF</td>
</tr>
<tr>
<td>PCS 7</td>
<td>Profibus, AS-I</td>
</tr>
<tr>
<td>Alspa</td>
<td>WFIP, Profibus</td>
</tr>
</tbody>
</table>

Tab. 6. Bazy danych podsystemów inżynierskich

<table>
<thead>
<tr>
<th>Baza danych</th>
<th>DCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingres</td>
<td>Melody, Teleperm</td>
</tr>
<tr>
<td>Oracle</td>
<td>Ovation, Alspa</td>
</tr>
<tr>
<td>MS SQL Server</td>
<td>Experion</td>
</tr>
<tr>
<td>Własna</td>
<td>Metso, AC 800M, PCS 7, DeltaV</td>
</tr>
</tbody>
</table>

Niestandardowe bloki. Tworzenie niestandardowych bloków umożliwiają:

- **edytory makrobloków:** wszystkie systemy PCS 7, DeltaV, Alspa,
- **języki IEC 61131:** AC 800M, PCS 7, DeltaV, Alspa,
- **języki uniwersalne:** C/C++ w Ovation i Experionie, Java (for Process Control) w Metso.

Rozkład bloku bibliotecznego na najprostsze bloki i funkcje rozpoznaje zwykle edycję nowego makrobloku.

Pętla PID. Narzędzia oferowane dla pętli PID umożliwiają:

- *samostrojenie:* Tune Ovation, Autotune AC 800M, PID Tuner PCS 7, WinPIM Alspa.

Samostrojenie bazuje głównie na odpowiedziach skokowych, ale czasem także na oscylacjach przekaźnikowych lub pobudzeniu pseudo-przypadkowym. Identyfikowane transmisje obiektów są następujące: (1) n-ty rząd bez opóźnienia - *Loop*, PCS 7, (2) 2-gi rząd z opóźnieniem - Ovation, PCS 7, (3) n-ty rząd z opóźnieniem - Alspa.

Zaaawansowane algorytmy. Z tabeli 7 widać, że logika rozmyća, sieci neuronowe i sterowanie predykcjne stały się powszechne. Logika rozmyća zastępuje PID dla „trudnych” pół regulacyjnych - Ovation, DeltaV. Sieci neuronowe funkcjonują jako wirtualne czujniki niemierzalnych wielkości, np. stężenia, sprawności - Experion, PCS 7, DeltaV, bądź jako modele proce- su wykorzystywane do prognozowania - Ovation, Alspa (rys. 1).

Sterowanie predykcjne służy do regulacji wielowymiarowej - Ovation, DeltaV, Alspa, bądź jest zorientowane na optymalizację - Experion, Metso, PCS 7.

6. Podsystemy operatorskie

Platformy oparte na Windows Server/XP zdziesięciolewa Unix. Większość producentów rekomenduje komputery Dell, Siemens i Metso stosują jednak własny sprzęt, aby mieć gwarancję stabilności. Czas aktualizacji obrazu wynosi 1 s (0.1 s dla „szyszkowych” zmiannych w Ovation). Wywołanie nowego obrazu zajmuje 2 s.

Sterowanie operatorskie. Jest prowadzone za pomocą stacyjek (faceplates) przyporządkowanych modułom sterującym lub blokom funkcyjnym. Stacyjki mają parę wariantów (rys. 3) stosownie do potrzeb użytkowników i funkcjonują w trybie „karuzeli” lub „przepięcia” (pinning). Przypiecie chroni stacyjkę przed zniknięciem, gdy wywoływany jest nowy obraz.

Obrazy standardowe. Każdy system DCS zawiera zestaw obrazów prezentujących dane aktualne i historyczne w ustalonej formie. Sa to trendy y=fx(t), poł na pracy y=f(x), listy alarmów, grupy stacyjek, średnie itd. Okna trendów można konfigurować on-line przeciągając nazwy sygnałów (tags) z przeglądarki lub obrazu graficz- nego.

Rys. 3. Wersje stacyjki w Process Portal - ABB

Tab. 7. Zaaawansowane algorytmy

<table>
<thead>
<tr>
<th>Algorytm</th>
<th>DCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logika rozmyta</td>
<td>Ovation, Experion, Metso, AC 800M, DeltaV, Alspa</td>
</tr>
<tr>
<td>Sieć neuronowa</td>
<td>Ovation, Experion, Metso, AC 800M, PCS 7, DeltaV</td>
</tr>
<tr>
<td>Sterowanie</td>
<td>Ovation, Experion, Metso, PCS 7, DeltaV, Alspa</td>
</tr>
</tbody>
</table>

Alarmy i zarzadzenia. Listy alarmów i zarzadzenia mozna filtrować ze względu na podobszary procesu, stacje systemu, okres czasu, prioritet itp. Służę to przede wszystkim ustaleniu przycznie nieprawo- sprawności. Aplikacje dotyczące alarmów i zarzadzeń sa redukowane.

Indywidualne środowisko. Aktualną tendencją jest dostarczenie operatorowi narzędzia do tworzenia indywidualnego środowiska.
Składa się na to:
- orientacja graficzna, tzn. katalog z „ulubionymi” obrazami, zestaw okien wewnętrznych oraz ich układ,
- menu kontekstowe obiektów graficznych, stacjek, trendów, list alarmów i zdarzeń,
- edytor graficzny dostępny w podsystemie operatorskim (a nie tylko inżynierskim).
Orientacja graficzna i menu kontekstowe są konfigurowane online przez operatora. Środowisko pracy zależy również od zestawu aplikacji. DeltaV oferuje ich około 15.

7. Zarządzanie informacją

Platforma dla zarządzania informacją są serwery danych długookresowych nazywane historianami (rys. 1).

Historiany. Pojedynczy historian przechowuje 10 do 20 tys. sygnałów za okres np. 2 lat. Jak widać z tab. 8, bazę danych w ponad połowie systemów jest Oracle. Typowy cykl zapisu wynosi 5 s, a minimalny 1 s. Zdarzenia rejestrowane są w chwili wystąpienia (rozdziesiołość 1 ms). Dyski RAID i redundacja serwerów gwarantują dyspozycyjność. Unifomrness PHD Experiona i DNAHistorian Metso są niezależnymi produktami stosowanymi także w innych systemach.

Elastyczność. Dostosowanie aplikacji do konkretnych potrzeb jest warunkiem pełnego wykorzystania dostępnej informacji. Na elastyczność składają się następujące cechy:
- konfigurowanie aplikacji podczas pracy systemu,
- środowisko obliczeń technologicznych wykorzystujące Visual Basic lub własne skrypty,
- gromadzenie wiedzy na podstawie notatek operatorskich,
- odwrzanie obrazów graficznych z danych historycznych (Replay Metso),
- konfiguracja okien aplikacji przez zdalnych użytkowników (Remote Clients ABB, WebStage Metso).
ABB Aspect Objects. Jest to technologia pozwalająca integrować w jednolitym środowisku całość informacji o procesie, tzn. dotyczącej sterowania, obsługi operatorskiej, konserwacji urządzeń, technologii itp. [4]. Informacja ta pochodzi z różnych źródeł, a standardowe interfejsy udostępniają ją różnym grupom użytkowników - automatykom, operatorom, konserwatorom, technologom - w zrozumiały dla nich formie. Aspekt realnego obiektu - sterownika, zaworu, pompy - jest jego cecha oraz funkcje służące do jej przetwarzania, istotne z punktu widzenia danej grupy. Aspekt może być schemat FBD, obraz graficzny, instrukcja konserwacji, tabela danych o jakości produkcji. W sensie informatycznym obiekt jest nośnikiem odsyłaczy do swoich aspektów. Serwery aspektów występujące w systemach ABB (Melody, AC 800M) zawierają bazy danych z odpowiednimi informacjami. Podobne tendencje do integracji w systemie DCS ogólnej informacji o procesie widać również u innych producentów, np. w pakiecie SIM IT Siemens.

8. Podsumowanie

Dokonano przeglądu podstawowych cech rozproszonych systemów sterowania DCS. Złożyły się na to architektura i sieci, stacje procesowe, obsługa aparatury obiektowej, protokół OPC, charakterystyka inżynierii, indywidualizacja środowiska operatorskiego oraz elastyczność zarządzania informacją. Systemy DCS stają się platformą do integracji całości informacji o sterowanym procesie.

9. Literatura

Title: DCS distributed control systems.