Wyznaczanie macierzy przekształceń zmiennych stanu liniowych układów o zmiennych parametrach

Prof. dr hab. inż. TADEUSZ KACZOREK

Streszczenie
Podano metodę wyznaczania macierzy przekształcającej sterowalną parę macierzy liniowych układów ciągłych i dyskretnych o zmiennych parametrach o jednym wejściu do żadnej postaci kanonicznej. Sformułowano warunki przy spienieniu, których macierz \(A(t) \) układu wyjściowego i przekształconego \(\tilde{A} \) mają ten sam wielomian charakterystyczny, czyli
\[
\det[I,A(t)] = \det[I,\tilde{A}].
\]
Podano dwie procedury wyznaczania tej macierzy, które zilustrowano przykładami.

Abstract
A method is proposed for determination of state transformation of a pair of matrices to a given canonical form for linear time-continuous and discrete-time single input systems. Conditions are established under which the given matrix \(A(t) \) and the transformed matrix \(\tilde{A} \) have the same characteristic polynomial, i.e., \(\det[I,A(t)] = \det[I,\tilde{A}] \). Two procedures for determination of the transformation matrix are given and illustrated by examples.

1. Wprowadzenie

Przestaje się podać inną, nową metodę, rachunkowo znacznie prostszą, wyznaczania macierzy przekształcającej sterowalną parę macierzy liniowych układów ciągłych i dyskretnych o jednym wejściu do żadnych postaci kanonicznych.

2. Przekształcenie liniowe zmiennych stanu

Niech \(R^{m\times n} \) będzie zbiorem macierzy o wymiarach \(m \times n \) i elementach z ciała liczba rzeczywistych oraz \(R^{n\times n} \).

Ważne też pod uwagę liniowy układ ciągły o zmiennych parametrach opisany równiami
\[
\dot{x}(t) = A(t)x(t) + B(t)u(t)
\]
\[
y(t) = C(t)x(t) + D(t)u(t)
\]
przy czym \(x(t) \in R^n, u(t) \in R^m \) i \(y(t) \in R^p \) są odpowiednio wektorami stanu, wymuszenia (sterowań) i odpowiedzi a macierze \(A(t) \in R^{n \times n}, B(t) \in R^{n \times m}, C(t) \in R^{p \times n}, D(t) \in R^{p \times m} \) mają elementy zależne od czasu \(t \) i są dowolnie wiele razy ciągle różniczkowalne. Niech macierz nieosiobliwa \(P(t) \) przekształcenia liniowego zmiennych stanu
\[
x(t) = P(t)y(t) \ det P(t) > 0 \ \text{dla wszystkich} \ t \geq 0
\]
ma ciągłe pochodne dowolnego rzędu.

Różniczkując względem czasu zależność (2) i korzystając z równania (1a) otrzymamy
\[
\dot{\tilde{x}}(t) = A(t)\tilde{x}(t) + B(t)\tilde{u}(t) = \tilde{A}(t)\tilde{x}(t) + B(t)\tilde{u}(t)
\]
Wyznaczając z równania (3) \(\dot{x} \) otrzymujemy
\[
\dot{\tilde{x}}(t) = \tilde{A}(t)\tilde{x}(t) + \tilde{B}(t)\tilde{u}(t)
\]
przy czym
\[
\tilde{A}(t) = P^{-1}(t)(A(t)X(t) - P(t)B(t))
\]
\[
\tilde{B}(t) = P^{-1}(t)B(t)
\]
Podstawiając zależność (2) do równania (1b) dostaniemy
\[
y(t) = \tilde{C}(t)\tilde{x}(t) + \tilde{D}(t)\tilde{u}(t)
\]
przy czym
\[
\tilde{C}(t) = C(t)P^{-1}(t)
\]
\[
\tilde{D}(t) = D(t)
\]
Jaki wiadomo macierz sterowalności (osiagalności) układu (1) ma postać [1]
\[
\tilde{S}_{1} = [S_{11} \ S_{12} \ldots \ S_{1n}]
\]
przy czym
\[
S_{1i} = B_i(t) \quad S_{1i} = S_{1i} \cdot A(t)S_{1i} \quad \text{dla} \ i=2,\ldots n
\]
Układ (1) jest sterowalny wtedy i tylko wtedy, gdy [1]
\[
\text{rzad} S_{1} = n \quad \text{dla wszystkich} \ t \geq 0
\]
Analogicznie definiujemy macierz sterowalności układu przekształconego [4]
\[
\tilde{S}_{1} = [\tilde{S}_{11} \ \tilde{S}_{12} \ldots \ \tilde{S}_{1n}]
\]
przy czym
\[
\tilde{S}_{1i} = \tilde{B}_i \quad \tilde{S}_{1i} = \tilde{S}_{1i} \cdot \tilde{A}(t)S_{1i} \quad \text{dla} \ i=2,\ldots n
\]
Korzystając z zależności (5) łatwo wykazać, że macierz sterowalności (7) i (9) są związane zależnością [1]
\[
S_{1} = P(t)\tilde{S}_{1}
\]
Sterowalność jest, więc niezniszczalna względem przekształcenia liniowego zmiennych stanu (2).

Jeżeli \(\text{rzad} \ S_{1i} = n \) to znacz macierzy sterowalności \(S_{1i} \) i \(S_{1i}^z \) z zależności (10) możemy wyznaczyć macierz \(P(t) \) [1]. W pracy tej zostanie przedstawiona inna nowa metoda wyznaczania macierzy \(P(t) \) przekształcającej matę macierzy \(A(t), B(t) \) do znanej postaci kanonicznej.

Z pierwszej z zależności (5) wynika, że
\[
\tilde{A}(t) = P^{-1}(t)A(t)P(t)
\]
wtedy i tylko wtedy, gdy
\[
P^{-1}(t)P(t) = 0
\]
Z zależności (11) mamy
det[\mathbf{I}_n - \mathbf{\Lambda}(\ell)] = det[\mathbf{I}_n - \mathbf{P}^{-1}(\ell)] = det[\mathbf{I}_n - \mathbf{A}(\ell)\mathbf{P}(\ell)] = \det\mathbf{P}^{-1}(\ell)\det(\mathbf{I}_n - \mathbf{A}(\ell))\det\mathbf{P}(\ell) = \det(\mathbf{I}_n - \mathbf{\Lambda}(\ell)) = (\mathbf{P}(\ell))^n$

dedyż $\mathbf{P}(\ell) = [\det\mathbf{P}(\ell)]^{1/n}$.
Jeżeli jest spełniony warunek (12) to macierze $A(\ell)$ i $\mathbf{\Lambda}(\ell)$ mają więc ten sam wielomian charakterystyczny.

3. Istota proponowanej metody

Istotę tej nowej metody przedstawimy dla układu o jednym wejściu ($m=1, B(\ell)=b(\ell)\in \mathbb{R}^n$).
Niezwa para macierzy $A(\ell), \mathbf{\Lambda}(\ell)$ ma następującą postać kanoniczną

$$
\mathbf{\Lambda}(\ell) =
\begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 1 \\
-a_0 & -a_1 & -a_2 & \cdots & -a_n \\
\end{bmatrix},
\quad
b(\ell) = [0, 0, 0, \ldots, 0, b]'.
$$

(13)

Korzystając z (9) łatwo sprawdzić, że para (13) jest sterowalna dla wszystkich wartości parametrów $a_i(\ell), i=0,1,\ldots,n$ oraz każdej chwili $\ell \geq 0$.
Zakładamy, że dana para $(A(\ell), b(\ell))$ jest również sterowalna dla wszystkich jej parametrów i każdej chwili $\ell \geq 0$.
Niezwa $P(\ell)$ będzie i-tą kolumną $(i=1,\ldots,n)$ poszukiwanej macierzy $P(\ell)$. Z zależności (5) i (13) mamy

$$
\mathbf{b}(\ell) = \mathbf{P}(\ell)^{-1} \mathbf{b}(\ell) = \begin{bmatrix} P_0 & P_1 & \cdots & P_n \end{bmatrix}
= \begin{bmatrix} 0 & 1 & \cdots & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 1 \\
-a_0 & -a_1 & -a_2 & \cdots & -a_n \\
\end{bmatrix}
$$

oraz

$$
\begin{bmatrix} P_0 & P_1 & \cdots & P_n \end{bmatrix}
= \begin{bmatrix} 0 & 1 & \cdots & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 1 \\
-a_0 & -a_1 & -a_2 & \cdots & -a_n \\
\end{bmatrix}
$$

(14)

Z zależności (14) mamy

$$
P(\ell) = b(\ell)
$$

(16)

Znając macierz $b(\ell)$ możemy więc wyznaczyć n-tą kolumnę macierzy $P(\ell)$. Mnożąc macierz $P(\ell)$ przez n-tą kolumnę macierzy $\mathbf{\Lambda}(\ell)$ z równości (15) otrzymamy

$$
P_{-a_0}(\ell) = a_{n-1}P_{n-1}(\ell) - P_{n}(\ell)
$$

czyli

$$
P_{-a_0}(\ell) = a_{n-1}P_{n-1}(\ell) + A(\ell)P_{n+1}(\ell) - P_{n}(\ell)
$$

(17)

Aby wyznaczyć elementy $a_i(\ell), i=0,1,\ldots,n-1$ macierzy $\mathbf{\Lambda}(\ell)$ znając macierz $A(\ell)$ obliczymy wielomian charakterystyczny tej macierzy

$$
det[\mathbf{I}_n - \mathbf{\Lambda}(\ell)] = s^n - a_0 s^{n-1} - \cdots - a_{n-1} s - a_n
$$

(18)

Znając współczynniki $a_i(\ell)$ oraz $P(\ell)$ możemy z zależności (17) wyznaczyć kolumnę $P_{-a_0}(\ell)$ macierzy $P(\ell)$.
Aby wyznaczyć kolumnę $P_{-a_0}(\ell)$ macierzy $P(\ell)$ mnozymy macierz $P(\ell)$ przez n-tą kolumnę macierzy $\mathbf{\Lambda}(\ell)$ z równości (15) otrzymamy

$$
P_{-a_0}(\ell) = a_{n-1}P_{n-1}(\ell) - P_{n}(\ell)
$$

czyli

$$
P_{-a_0}(\ell) = a_{n-1}P_{n-1}(\ell) + A(\ell)P_{n+1}(\ell) - P_{n}(\ell)
$$

(19)

Kontynuując tę procedurę możemy wyznaczyć kolejne kolumny $P_{-a_0}(\ell),\ldots,P_{-a_1}(\ell)$ poszukiwanej macierzy $P(\ell)$.
Aby otrzymać kolumnę $P_{-a_1}(\ell)$ mnozymy macierz $P(\ell)$ przez drugą kolumnę macierzy $\mathbf{\Lambda}(\ell)$ i wtedy z równości (15) otrzymamy

$$
P_{-a_1}(\ell) = a_{n-2}P_{n-2}(\ell) - P_{n-1}(\ell)
$$

czyli

$$
P_{-a_1}(\ell) = a_{n-2}P_{n-2}(\ell) + A(\ell)P_{n+1}(\ell) - P_{n-1}(\ell)
$$

(20)

Zależności (17), (19) i (20) możemy zapisać w postaci

$$
P_{-a_i}(\ell) = a_{n-i}P_{n-i}(\ell) + A(\ell)P_{n+1}(\ell) - P_{n-i+1}(\ell)
$$

dla $k = n-1,\ldots,1$.
Znając $A(\ell)$ i $b(\ell)$ możemy wyznaczyć macierz $P(\ell)$ korzystając z następującej procedury

Procedura 1.
Krok 1. Mając macierz $A(\ell)$ wyznaczamy współczynniki $a_i(\ell), i=0,1,\ldots,n-1$.
Krok 2. Korzystając ze wzoru (21) dla $k=n-1,n-2,\ldots,1$ wyznaczamy kolejno kolumny $P_{-a_0}(\ell),\ldots,P_{-a_1}(\ell)$ macierzy $P(\ell)$

Przykład 1. Wyznaczyć macierz $P(\ell)$ przekształcającą parę macierzy

$$
A(\ell) = \begin{bmatrix} 0 & -e^{-\ell} \\
1 & 2 \end{bmatrix},
b(\ell) = \begin{bmatrix} 1 \\
0 \end{bmatrix}
$$

(22)

do postaci kanonicznej (13).
Para (22) jest sterowalna, gdyż

$$
\text{rzd}[S(\ell), S_{-1}(\ell)] = \text{rzd}[\begin{bmatrix} e & 0 \\
0 & -1 \end{bmatrix}, \begin{bmatrix} -e^{-\ell} & 0 \\
0 & 1 \end{bmatrix}]
$$

= $\text{rzd}[\begin{bmatrix} 1 & 0 \\
0 & -1 \end{bmatrix}] = 2$.

Korzystając z procedury 1 otrzymamy

Krok 1. Wielomian charakterystyczny (18) w tym przypadku ma postać

$$
det[\mathbf{I}_n - \mathbf{A}(\ell)] = s^n - \ell - \frac{s^2}{1 - \frac{2}{s}} = s^n - 2s + e^{-\ell},
$$

(23)

(24)

Krok 2. Korzystając ze wzoru (21) otrzymujemy

$$
P_{-a_1}(\ell) = a_{n-2}P_{n-2}(\ell) - P_{n-1}(\ell)
$$

oraz

$$
P_{-a_1}(\ell) = \begin{bmatrix} 0 & 1 \\
0 & 2 \end{bmatrix}
$$

W tym przypadku warunek (12) jest spełniony gdy $b(\ell) = 0$.
Zgodnie z zależnościami (5) macierze $\mathbf{\Lambda}(\ell)$ i $b(\ell)$ mają postać

$$
\mathbf{\Lambda}(\ell) = \mathbf{P}^{-1}(\ell)\mathbf{A}(\ell)\mathbf{P}(\ell) = \begin{bmatrix} 0 & 1 \\
0 & 0 \end{bmatrix},
b(\ell) = \begin{bmatrix} 0 & 0 \\
0 & -e^{-\ell} \end{bmatrix}
$$

(25)

a więc postać kanoniczną (13).

Niech tym razem para macierzy $\mathbf{\Lambda}(\ell)$ i $b(\ell)$ ma następującą postać kanoniczną
\[\begin{bmatrix} 0 & 0 & \ldots & 0 & -a_0(t) \\ 1 & 0 & \ldots & 0 & -a_1(t) \\ 0 & 1 & \ldots & 0 & -a_2(t) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & 1 & -a_{n-1}(t) \end{bmatrix} \begin{bmatrix} b(t) \\ \vdots \\ b(t) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \]

(26)

Korzystając z (9) łatwo sprawdzić, że para (26) jest sterowalna dla wszystkich wartości parametrów \(a_k(t)\), \(k=0,1,\ldots,n-1\) oraz każdej chwili \(t\geq 0\).

Zakładamy, że dana para \((A(t),b(t))\) jest również sterowalna dla wszystkich jej parametrów i każdej chwili \(t\geq 0\).

Niech \(P_i\) będzie i-tą kolumną \((i=1,\ldots,n)\) poszukiwanej macierzy \(P(t)\)

Z zależności (5) i (26) mamy

\[b(t) = P(t)\bar{y}(t) = \begin{bmatrix} P_1(t) & P_2(t) & \ldots & P_n(t) \end{bmatrix} \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} = P_i(t) \]

oraz

\[\begin{bmatrix} 0 & 0 & \ldots & 0 & -a_0(t) \\ 1 & 0 & \ldots & 0 & -a_1(t) \\ 0 & 1 & \ldots & 0 & -a_2(t) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & 1 & -a_{n-1}(t) \end{bmatrix} \begin{bmatrix} P_1(t) \\ P_2(t) \\ \vdots \\ P_n(t) \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} \]

(28)

\[P_i(t) = \begin{bmatrix} a_0(t) \\ a_1(t) \\ \vdots \\ a_{n-1}(t) \end{bmatrix} \]

Z zależności (27) mamy

\[P_i(t) = b(t) \]

(29)

Znając macierz \(b(t)\) możemy więc wyznaczyć pierwszą kolumnę macierzy \(P(t)\). Mnożąc macierz \(P(t)\) przez pierwszą kolumnę macierzy \(A(t)\) z równości (28) otrzymujemy

\[P_1(t) = A(t)P_1(t) \]

(30)

a mnożąc \(P(t)\) przez drugą kolumnę macierzy \(A(t)\)

\[P_2(t) = A(t)P_2(t) \]

(31)

Kontynuując tę procedurę można wyznaczyć kolejne kolumny \(P_3(t),\ldots,P_n(t)\) poszukiwanej macierzy \(P(t)\).

Zależności (29)-(31) możemy zapisać w postaci

\[P_i(t) = b(t)P_i(t) - A(t)P_i(t) \]

(32)

Znając \(A(t)\) i \(b(t)\) możemy wyznaczyć macierz \(P(t)\) korzystając z następującej procedury.

Procedura 2.

Krok 1. Mając macierz \(A(t)\) wyznaczamy współczynniki \(a_k(t)\), \(k=0,1,\ldots,n-1\).

Krok 2. Korzystając ze wzoru (32) dla \(k=2,\ldots,n\) wyznaczamy kolejno kolumny \(P_2(t),P_3(t),\ldots,P_n(t)\) macierzy \(P(t)\).

Przykład 2. Wyznaczyć macierz \(P(t)\) przekształcającą parę macierzy

\[A(t) = \begin{bmatrix} -1 & -2 \\ 0 & 3 \end{bmatrix}, \quad b(t) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \]

do postaci kanonicznej (26).

Para (33) jest sterowalna, gdyż

\[\text{räd}[S(t)] = \text{räd}[S(t) - A(t)b(t)] = 2 \]

(33)

Korzystając z procedury 2 otrzymamy

Krok 1. Wielomian charakterystyczny (18) w tym przypadku ma postać

\[\text{det}[S(t) - A(t)b(t)] = t^{s+1} + 2t^s - 3t^2 - 2t - 3 \]

oraz

\[\chi(t) = 2e^{-t} - 3, \quad a(t) = -2 \]

(34)

Krok 2. Korzystając ze wzoru (32) otrzymamy

\[P_1(t) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad P_2(t) = A(t)b(t) = \begin{bmatrix} 0 \\ -3 \end{bmatrix} \]

(35)

oraz

\[P_i(t) = \begin{bmatrix} P_1(t) \\ P_2(t) \end{bmatrix} = \begin{bmatrix} 0 & -2 \\ 1 & 3 \end{bmatrix} \]

(36)

a więc postać kanoniczna (26).

Niech

\[0 \begin{bmatrix} 0 & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \]

(37)

\[P = \begin{bmatrix} 0 & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \]

(38)

\[P_i(t) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]

oraz odpowiednio

\[P_i(t) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]

(39)
Powyższą metodę wyznaczania macierzy \(P(t) \) łatwo można uogólnić na parę macierzy (38) i (39).

4. Uogólnienie metody na układy dyskretne

Weźmy pod uwagę liniowy układ dyskretny o zmiennych parametrach opisany równaniami:

\[
x_{k+1} = A_k x_k + B_k u_k, \quad k = 0, 1, \ldots
\]

\[
y_k = C_k x_k + D_k u_k
\]

(40a)

(40b)

przy czym \(x_k \in \mathbb{R}^n \), \(u_k \in \mathbb{R}^m \) i \(y_k \in \mathbb{R}^p \) są odpowiednio wektorami stanu, wymuszeń i odpowiedzi, a macierze \(A_k \in \mathbb{R}^{n \times n} \), \(B_k \in \mathbb{R}^{n \times m} \), \(C_k \in \mathbb{R}^{p \times n} \), \(D_k \in \mathbb{R}^{p \times m} \) mają elementy rzeczywiste zależne od \(k \).

Niech macierz \(P_k \) przekształca liniowego zmienionego stanu

\[
x_k = P_k \tilde{x}_k
\]

będzie nieosobliwa dla wszystkich \(k \geq 0 \).

Korzystając z (41) i (40a) możemy napisać

\[
x_{k+1} = P_{k+1} x_{k+1} = A_k P_k \tilde{x}_k + B_k u_k
\]

oraz

\[
\tilde{x}_{k+1} = \tilde{A}_k \tilde{x}_k + \tilde{B}_k u_k
\]

(42a)

(42b)

przy czym

\[
\tilde{A}_k = P_{k+1} A_k P_k,
\]

\[
\tilde{B}_k = P_{k+1} B_k, \quad k = 0, 1, \ldots
\]

Podstawiając (41) do (40b) otrzymamy

\[
y_k = C_k \tilde{x}_k + D_k u_k, \quad k = 0, 1, \ldots
\]

(43)

(44)

Z pierwszej z zależności (43) wynika, że jeżeli \(P_{k+1} = P_k \) dla \(k = 0, 1, \ldots \) to macierze \(\tilde{A}_k \) i \(A_k \) są podobne i mają te same wielomiany charakterystyczne tzn. \(\det[\lambda - A_k] = \det[\lambda - \tilde{A}_k] \). W tym przypadku podana wyżej metoda można łatwo przenieść na układy dyskretne o zmienionych parametrach.

5. Uwagi końcowe

Dla układów o jednym wejściu (\(m = 1 \)) podano metodę wyznaczania macierzy \(P(t) \) przekształcającej parę sterowaną \((A(t), b(t))\) do zadanej postaci kanonicznej \((A(t), b(t))\). Przekształcenie to nie zmienia wielomianu charakterystycznego układu ciągłego (dyskretnego), gdy jest spełniony warunek (12) \((P_{k+1} = P_k \text{ dla } k = 0, 1, \ldots)\). Prze

mienienie tej metody na dualną parę obserwawłowana \((A(t), C(t))\) jest trywialnym i wynika z zasady dualizmu. Uogólnienie tej metody na przykład układu o wielu wejściach (\(m > 1 \)) jest problemem otwartym i jest przedmiotem dalszych badań.

6. Literatura

Tytuł: Determination of state transformation matrices of linear time-varying systems

Artykuł recenzowany

Z której półki

Ciężko wydawania czasopisma wymaga materiałów środowisk, za każdy przejaw działania redakcji trzeba płacić – robią to przede wszystkim autorzy reklam, którzy przekazując na redakcyjne konto niemalą sumkę, niosą na swoich barkach cień publikacji prac kolegów – teoretyków. I tu wkrząca pan redaktor, podejmując decyzję o ewentualnych drukach otrzymywanych materiałów. Ułatwianie się reklamy przedłuża życie pisma i jednocześnie obowiązuje ogółowi możliwość zakupu interesującego urządzenia. Korzystej ogólna. Publikacja pewnych odścier stycznych wzbogaca zasoby wiedzy w portfelu nauki, przyczyniając się jednocześnie do zwiększenia dorobku autora, a w przyszłości, być może do skonstruowania równie interesującego urządzenia stanowiącego również przedmiot reklamy, która z kolei również przedłuża pisma itd., itd.

I tu panie redaktorze, musi pan rozstrzygnąć co najpierw skierować do druku: czy obietnicę gotówkę zaraz, czy przewidując pewną informację dla społeczeństwa potem. I musi Pan wziąć pod uwagę fakty, żeby nie znieczać autorów – naukowców długim oczekiwaniem na druk i żeby nie zmieścić reedyczanego pisma na informator handlowy.

A na co komu ten właśnie teść? A po to, żeby myśleć nieco odpozna od techniczno – naukowego farszu. NIK jest też rysenką, CISZA jest też słowem.