Cyfrowe pomiary rezystancji mostkami zrównoważonymi

Dr hab. inż. Tadeusz SKUBIS, prof. Politechniki Śląskiej

e-mail: tadeusz.skubis@pols.pl

Streszczenie

W artykule przedstawiono nowe możliwości równoważenia mostków prądu stałego, wynikające z kluczowania. Mostki równoważone działanowo zachowują wszystkie właściwości mostków zrównoważonych oraz mają wiele interesujących nowych właściwości takich jak: możliwość automatycznego równoważenia przez kluczowanie rezystancji, cyfrowa postać wyniku, cyfrowa zmiana czułości mostka, osiągnięcie stanu zrównoważenia mostków, które w składach dotychczasowych pracują jako nierównoważone i inne.

Abstract

New possibilities of DC bridge balanced by chopping of the bridge arm resistance are presented in the paper. The charge-balanced resistance bridges are characterized by all features well known from balanced Wheatstone bridge, but they have also a lot of interesting new features (automatic balancing by resistance chopping, digital form of the measurement result, digital bridge sensitivity change, balanced circuit as an alternative usually non-balanced bridge). Different modes of DC bridge with chopped arm resistance resulting from general bridge balance equation are pointed out.

1. Wstęp

Pomiar rezystancji mostkiem zrównoważonym należy do klasycznych zadań metrologii elektrycznej, jest dobrze znany i często stosowany. Mogłoby się wydawać, że od strony teoretycznej jest to zagadnienie zamknięte, w pełni opisane w starszej literaturze [1,2]. Tematyka doskonalenia mostkowego pomiaru rezystancji nie jest podejmowana w nowych pracach, ale okazuje się, że struktura mostka Wheatstone’a ma właściwości, których dotychczas nie zauważono.

Mgr inż. Bolesław TYNC

Studia na Wydziale Automatyki i Informatyki Politechniki Śląskiej ukończył w 1983 roku. W roku tym opracował i wdrożył oryginalny cyfrowy rejestrator temperatury płynnej stałej. Opracowany w 1986 roku pierwszy układ mostka równoważonego ładunkowo opatentował i jego aplikację w postaci termometru cyfrowego TBP100 wdrożył na podstawie umowy licencyjnej. W 1990 roku założył własne przedsiębiorstwo, ZEAP TYBO, w którym do dnia dzisiejszego rozwija metodę ładunkowego równoważenia mostków prądu stałego, wdrażając do produkcji nowe przyrządy pomiarowe wykorzystujące właściwości mostków równoważonych ładunkowo. Za wynalazki i produkty wyróżniono złotymi medalami: TAREL92, BRUSSELS-EUREKA’93, BRUSSELS-EUREKA’95, a także Nagrodę NOT II-go stopnia (MISTRZ TECHNIKI 2002). Od trzech lat współpracuje z Instytutem Metrologii i Automatyki Elektrotechnicznej Politechniki Śląskiej w zakresie naukowego opracowania mostków równoważonych ładunkowo. Jest autorem i współautorem referatów prezentowanych na konferencjach naukowych.

e-mail: tybo@pv.pl

Równoważenie mostka Wheatstone’a wymaga zmiany rezystancji w ramionach tak, żeby prądy płynące w gałkach powodowały spadki napięć na takich wartościach na poszczególnych rezystancjach, żeby na przekładniej uzyskać napięcie zero. Realizowane jest to przez zmianę wartości rezystancji w gałce za pomocą rezystorów kilkudekałowych. Zazwyczaj nastawienie tej rezystancji jest realizowane przez nastawę oporników wzorcowych przy steronowaniu dekadowym, albo binarnym. Zmianą wartości średnich prądów płynących w ramionach mostka można również uzyskać przez modulację impulsową prądów w jednym lub kilku ramionach. Jest to możliwe w odpowiednio skonstruowanych układach – mostkach równoważonych ładunkowo, tzw. mostkach tybo [4]. W tak równoważonych układach mostkowych, proporcje średnich prądów przybierają wartości takie jak w tradycyjnych mostkach równoważonych. Rezystancja gałki przekładniej o stałej wartości zachowuje się jak rezystancja nastawna, o wartości zależnej od częstotliwości przelączania.

Tradycyjne mostki rezystancyjne równoważone (za wyjątkiem automatycznych cyfrowych [2]) nie są stosowane w technice cyfrowej ze względu na brak sygnału wyjściowego nadającego się do przetwarzania analogowo-cyfrowego.

Najprostsze układy mostków równoważonych ładunkowo można realizować na bazie klasycznego 4amierskiego mostka rezystancyjnego prądu stałego [3], włączając jeden lub dwa klucze w gałkach mostka.

2. Zasada działania mostka równoważonego ładunkowo

Na rys. 1 przedstawiono przykładową realizację mostka równoważonego ładunkowo jednym kluczem [3]. W analizie przyjęto, że elementy układu są idealne (wzmocnici operacyjni, klucz, kondensator, itd.).
Napięcie na kondensatorze C zmienia się proporcjonalnie do zgromadzonego w nim ładunku. Dla dodatniej wartości prądu I_{NZ}, napięcie U_c liniowo narasta.

Rozłączenie klucza $(I_4 = 0)$ przy wymuszonym $U_{BA} = 0$ zmienia wartości prądów w węźle B. Do kondensatora dopływa prąd I_{NR}:

$$I_{NR} = -I_3 < 0$$ (3)

Kondensator rozładowuje się – napięcie U_c liniowo opada.

Sygnał wyjściowy wzmacniacza operacyjnego $\Delta U_{wy} = -\Delta U_C$ steruje układem przelączającym klucz K w sposób zapewniający stabilną pracę układu [3]. Klucz K jest cyklicznie załączany na okres T_p a zliczanie liczby N załączeń klucza realizowane jest w czasie T wyznaczonym przez zależność:

$$T = 2T_p \cdot k$$ (4)

gdzie k – liczba zależna od konfiguracji układu sterującego.

Przy takim sterowaniu [3], dla N załączeń klucza, w czasie T (gdy klucz jest zwarty) do kondensatora C dopływa ładunek:

$$Q_z = N \cdot T_g \cdot I_{sZ}$$ (5)

Gdy klucz jest rozwarty, w czasie T z kondensatora wypływa ładunek:

$$Q_R = (2k - N) \cdot T_g \cdot I_{NR}$$ (6)

Suma ładunku w węźle B (rys. 3) jest równa zero:

$$Q_z + Q_R = N \cdot T_g \cdot I_{sZ} + (2k - N) \cdot T_g \cdot I_{NR} = 0$$ (7)

Z tej zależności, po przekształceniach, uwzględniając wartości prądów I_1 oraz I_2, otrzymuje się równanie równowagi mostka równoważonego ładunkowo:

$$N = 2k \cdot \frac{R_2 \cdot R_3}{R_1 \cdot R_3}$$ (8)

gdzie:

- N – liczba załączeń klucza K w okresie T
- R_1, R_2, R_3, R_4 – rezYSTancje gałęzi mostka
- k – liczba naturalna

W przedstawionym powyżej układzie mostka równoważonego ładunkowo wykorzystywano jeden klucz. Układ ten działa przy założeniu, że w mostku nie równoważonym jest spełniony warunek $U_{BA} > 0$ (rys. 2). W sytuacji, gdy $U_{BA} < 0$, równoważenie mostka odbywa się przy pomocy klucza włączonego w szereg z R_3.

3. Właściwości mostków równoważonych ładunkowo

3.1. Właściwości podstawowe

Warunek równowagi

Równanie równowagi mostka równoważonego ładunkowo ma podobną strukturę jak równanie równowagi mostka Wheatstone'a.

Równanie równowagi mostka Wheatstone'a:

$$\frac{R_2 \cdot R_4}{R_1 \cdot R_3} = 1$$ (9)

Równanie równowagi mostka równoważonego ładunkowo:

$$\frac{R_2 \cdot R_4}{R_1 \cdot R_3} = \frac{N}{2k}$$ (10)
Wzory (9) i (10) mają tylko różne prawe strony. Wyrażenie warunku równowagi (10) jest ogólniejsze, nie musi być równe jeden. Wynikają z niego nowe możliwości pomiaru (rozdz. 3.2.). W równaniu tym występuje współczynnik \(N \) o wartości nastawialnej z dużą rozdzielczością, która odpowiada nastawia umiarkowanie równowagi układu.

Wynik pomiaru

W mostku Wheatstone’a równoważonym, gdy znane są rezystancje trzech gałęzi, z warunku równowagi wyznacza się wartość rezystancji mierzonej (np. \(R_1 \)):

\[
R_2 = \frac{R_1 \cdot R_3}{R_4}
\]

(11)

W równaniu (11) dwie rezystancje (np. \(R_1 \) i \(R_2 \)) mają wartości ustalone (określa zakres pomiaru), a trzecia (np. \(R_3 \)) ma wartość proporcjonalną do mierzonej wartości \(R_2 \). Jeżeli \(\frac{R_1}{R_4} \) ma wartość typu 10\(^k\), to mostek ma właściwość bezpośredniego odczytu.

W mostku równoważonym ładunkowo, gdy znane są rezystancje trzech gałęzi, z warunku równowagi wynika liczba \(N \) proporcjonalna do wartości mierzonej rezystancji \(R_2 \):

\[
R_2 = \frac{R_1 \cdot R_3}{R_4} \cdot \frac{N}{2k}
\]

(12)

Z równań (9) ... (12) wynika, że zarówno dla mostka Wheatstone’a jak i mostka równoważonego ładunkowo wynika pomiaru: – jest proporcjonalny do wartości rezystancji w gałęziach mostka, – jest niezależny od napięcia zasilania mostka.

Jaki widać mostek równoważony ładunkowo zachowuje cechy równoważonego mostka Wheatstone’a.

3.2. Najważniejsze nowe właściwości mostków równoważonych ładunkowo

Mostki równoważone ładunkowo mają nowe interesujące właściwości.

Równowagowanie automatyczne przez przelaczenie jednego rezystora

Równowagowanie odbywa się automatycznie w prosty sposób przez przelaczenie jednego rezystora w gałęzi mostka. Rezystancja gałęzi przełączanej zachowuje się jak rezystancja nastawiona, zależna od częstotliwości przelaczenia. Ładunkowe równowagowanie realizuje się w prostych układach mostkowych.

Cyfrowa postać wyniku

W stanie równowagi mostka liczba przelaćnki klucza w czasie \(T \) jest proporcjonalna do wartości rezystancji mierzonej (8). Równowagowanie ładunkowe mostka jest w naturalny sposób związane z przetwarzaniem analogowo-cyfrowym.

W analizowanych przykładach mostek równoważony ładunkowo działa jak przerzutnik analogowo-cyfrowy sigma-delta. Jedną z wielu zalet tego układu jest niezależność od częstotliwości generatora. Ponadto mostek równowagowany ładunkowo daje wynik w postaci cyfrowej bez konieczności stosowania źródła napięcia odniesienia, w odróżnieniu od układów pomiaru rezystancji z przetwornikami analogowo-cyfrowymi, które wymagają stabilizowanego źródła napięcia odniesienia.

Bezpośrednie wskazanie kondensatorów, rezystancji, stosunku rezystancji lub stosunku kondensatora

Równanie (8) określające charakterystykę wyjściową przetwornika pomiarowego z mostkiem równoważonym ładunkowo można przedstawić w równańowych formach:

\[
N = 2k \cdot \frac{R_2 \cdot R_4}{R_1 \cdot R_3} = 2k \cdot \frac{G_1 \cdot G_3 \cdot R_2 \cdot R_4}{G_2 \cdot G_4}
\]

(13)

gdzie:

\[
G_1 = \frac{1}{R_1}, \quad G_2 = \frac{1}{R_1}, \quad G_3 = \frac{1}{R_2}, \quad G_4 = \frac{1}{R_4}.
\]

Z wyrażenia (13) widać, że mostek równoważony ładunkowo umożliwia bezpośredni pomiar rezystancji (\(R_1 \) lub \(R_2 \)), kondensator (\(G_1 \) lub \(G_2 \)) lub stosunków tych wielkości: rezystancji \(\frac{R_2}{R_1} \) lub kondensatorów \(G_1 \), \(G_2 \) lub \(G_3 \), \(G_4 \).

Bezpośrednie porównanie dwóch różnych stosunków rezystancji (konduktancji)

Równanie równowagi (10) mostka równoważonego ładunkowo można zapisać w formie:

\[
\frac{R_2}{R_1} = \frac{N}{2k} \quad \frac{R_3}{R_4}
\]

(14)

Dzięki możliwości zmiany liczby \(k \) możliwe jest bezpośrednie porównanie dwóch różnych stosunków rezystancji (14) lub kondensatorów (15):

\[
\frac{G_1}{G_2} = \frac{N}{2k} \quad \frac{G_3}{G_4}
\]

(15)

Porównywane stosunki rezystancji lub kondensatorów nie muszą być nominalnie jednakowe, ale mogą się różnić np. o rząd. Daje to możliwość bezpośredniego porównania dwóch różnych stosunków z rozbieżnością wynikającą z doboru liczby \(N \) oraz \(k \).

Zmiana czułości mostka

W mostku równoważonym ładunkowo oprócz możliwości zmiany czułości przez zmianę wartości \(R_1 \), \(R_3 \) i \(R_4 \) występujących w równaniu równowagi (12) można również zmieniać liczbę \(k \) zależną od konfiguracji układu cyfrowego. Umożliwia to cyfrową zmianę czułości mostka.

Przeszczep charakterystyki przez dołączenie dodatkowego rezystora

W mostku równoważonym ładunkowo możliwe są łatwe modyfikacje równania równowagi, do postaci uzyskanych w różnych sytuacjach praktycznych. Równolegle dołączanie rezystorów do układu podstawowego mostka pozwala przesuwać jego charakterystykę, co jest bardzo istotne np. przy pomiarze małych zmian rezystancji. Dla układu z odpowiednio dołączonym rezystorem \(R_0 \) [3] otrzymuje się:

\[
N = 2k \cdot \frac{R_2 \cdot R_4 - R_3}{R_1 \cdot R_3 - R_0}
\]

(16)

Z warunku równowagi (16) wynika, że charakterystykę tego mostkowego przetwornika pomiarowego można przesuwać równoległe zmieniając wartość rezystancji \(R_0 \).

Możliwość kształtowania charakterystyki

Mostek równoważony ładunkowo, z rezystorem np. \(R_2 \) zależny nielniomowo od pewnej wielkości fizycznej, połączony z cyfrowym układem kształtującym charakterystykę może ziluzoryjnie zwiększać zależność liczby \(N \) impulsów od tej wielkości. Przykład takiego rozwiązania przedstawiony jest w [5].

Osiągnięcie stanu równowagi mostków z zasady nierównoważonych

Klasyczny ochłodywowy mostek tensometryczny ma sygnał wyjściowy proporcjonalny do różnic względnych zmian rezystancji tensometrów oraz do napięcia zasilającego:

\[
U_{av} = \Delta R \quad R
\]

(17)
Układ ten ma ciekawą alternatywę w postaci mostka równoważonego ładunkowo. W układzie wykorzystującym dwu klucze równocześnie [4], można sprzężać mostek, który w wersji analogowej wykorzystywany jest jako niezrównoważony (np. mostek tensometryczny).

Wstawiając w miejsce rezystorów \(R_1 \) i \(R_2 \) tensometry (rozciągnięte i ściśkane): \(R_1 = R + \Delta R \), \(R_2 = R - \Delta R \), przyjmując: \(R_3 = R_4 = r \) oraz oznaczając: przez \(N \) – liczbę proporcjonalną do liczby przelączeń kluczy, przez \(k \) – liczbę zależną wyłącznie od układu cyfrowego, przez \(R \) – nominalną wartość rezystancji tensometru, przez \(\Delta R \) – odchylenie rezystancji tensometru, otrzymuje się następujący warunek równowagi mostka równoważonego ładunkowo:

\[
N = \frac{\Delta R}{R}
\]

(18)

Układ ten pozwala porównywać względné zmiany rezystancji tensometrów ze względem zmianą czasu złączania i wyłączania kluczy. Zatem wzorem dla pomiaru względnej zmiany rezystancji jest względna zmiana czasu (lub częstotliwości).

Mostek równoważony ładunkowo daje wynik cyfrowy proporcjonalny tylko do względnej zmiany rezystancji tensometrów. Jest on niezależny od napędu zasilania (jak w klasycznym mostku równownomnym). Wynik nie zależy także od wartości dołączających napędów rezystorów \(R_1 = R_4 = r \), ani od częstotliwości generatora.

Klasyczny mostek tensometryczny jest mostkiem z zasady niezrównoważony, zaś układ alternatywny jest mostkiem ładunkowo zrównoważonym.

Automatyczna kalibracja

Możliwość automatycznej kalibracji wynika z możliwości cyfrowej zmiany czułości, przesunięcia oraz kształtu charakterystyki mostka równoważonego ładunkowo.

4. Podsumowanie i wnioski

Przedstawione w artykule właściwości mostków równoważonych ładunkowo zostały potwierdzone w wielu różnych konstrukcjach mostkowych produkowanych w Zakładzie Elektronicznej Aparatury Pomiarowej TYBO. Są to układy względnie proste, nie wymagają drogich elementów i w wielu zastosowaniach mają bardzo dobre właściwości metrologiczne (duża dokładność, stabilność długotrwałą, niezawodność, liniość, odporność na zakłócenia, możliwość kształtowania charakterystyki, niezależność od napięcia zasilania i stabilności generatora).

Układy te dają wynik pomiaru o dużej rozdzielczości, a nie występuje w nich wiele punktów przełączenia, które w mostkach klasycznych ograniczają dokładność.

Adjutacja układu nie wymaga użycia potencjometrów.

Z analizy właściwości mostków równoważonych ładunkowo wynika, że w wielu zastosowaniach mogą one być bardzo dobrą alternatywą dla dotychczas stosowanych układów.

Literatura

Tytuł: Digital resistance measurements by means of charge-balanced bridge

Artykuł recenzowany

ZAPRASZAMY do PRENUMERATY czasopisma PAK w 2005 roku

Cena prenumeraty rocznej (bez zmian) 168,00 zł / 1 egz.

PRENUMERATĘ I KOLPORTAŻ PROWADZĄ:

Redakcja POMIARY-AUTOMATYKA-KONTROLA,
ul. Świętokrzyska 14A p. 535, 00-050 Warszawa
tel./fax (022) 827 25 40, e-mail: pak@data.pl, marketing: dorpak@data.pl

Zamówienia należy składać na załączonym blankiecie (wewnątrz zeszytu PAK 12/2004)

GARMOND PRESS SA ul. Nakielska 3 01-106 Warszawa
KOLPORTER SA ul. Strycharska 6 25-659 Kielce

Indywidualną sprzedaż prowadzi Centralna Księgarnia Techniczna, 00-050 Warszawa, ul. Świętokrzyska 14A oraz bezpośrednio Redakcja