Analiza dróg rozchodzenia się energii w konstrukcjach jako nowoczesne narzędzie eksperymentalnej oceny bezpieczeństwa i komfortu w przemyśle środków transportu

Dr inż. Krzysztof MENDROK

mendrok@agh.edu.pl

Streszczenie
W pracy opisano eksperymentalną technikę oceny rozchodzenia się drgań i hałasu w konstrukcjach. Metoda ta stosowana jest głównie w przemyśle środków transportu. Pokazano podstawowe założenia i metodykę. Duże uwagi został poświęcone metodom pozyskiwania i syntezie danych, których pomiar wprost jest utrudniony. Pokazano także narzędzia opracowane w środowisku Matlab służące do przeprowadzania omawianej analizy.

Abstract
In this paper an experimental technique for noise and vibration transfer path analysis is described. This method is mainly used in transportation industry. Basis assumptions and methodology, measurement techniques and non-measurable data synthesis methods are shown. Additionally a software tool for TPA calculations developed in Matlab environment is presented.

Słowa kluczowe: analiza dróg rozchodzenia się energii, analiza modalna, model modalny
Keywords: trasfer path analysis, modal analysis, modal model

1. Wstęp
Współczesne projektowanie złożonych urządzeń technicznych takich jak samochody, samoloty, pociągi, czy tramwaje wymaga spełnienia wysokich wymagań co do komfortu i bezpieczeństwa użytkownika. Istotny wpływ na komfort kierującego pojazdem bądź pasażera ma poziom hałasu i poziom drgań we wnętrz. Wśród wielu czynników powstającego i wpływającego na poziom hałasu i drgań, istotną rolę odgrywają charakterystyki konstrukcyjne pojazdu. Wpływ tych czynników jest znacznie złożony, co sugeruje konieczność wykorzystania metod analizy dróg rozchodzenia się energii.

2. Opis algorytmów
Algorytmy analizy rozchodzenia się energii w konstrukcjach zwanym w skrócie TPA (ang. Trasfer Path Analysis) pozwalają na wyznaczenie możliwych dróg rozchodzenia się energii, pochodzącej z różnych źródeł drgań, do określonych miejsc konstrukcji zwanymi kierunkami oceny [1], [5], [6], [11], [13]. Pozwalają na zlokalizowanie najistotniejszych źródeł drgań i hałasu oraz sprawdzić, które źródła (w przypadku lokalnej analizy) czy kierunki (w przypadku globalnej analizy) są najistotniejsze.

3. Podstawy teoretyczne
Podstawowa metodologia bazuje na dynamicznym modelu konstrukcji, który wprowadza związek pomiędzy wektorem wymuszeń \(f(t) \) oraz wektorem odpowiedzi w kierunkach oceny \(p(t) \). Wykrywa charakterystyki jednostajne, takie jak masywność, a także złożone, takie jak green function. W celu wyznaczenia tych parametrów wykorzystuje się algorytmy opisane w punkcie 2.
gęść: f może być siłą albo prędkością cząstki akustycznej w zależności czy rozważamy strukturalną czy akustyczną drogę przejścia energii.

Różne typy wymuszeń i kierunków oceny są traktowane jako dwa różne podkłady. Podkłady te związane są ze sobą przez powną liczbę mniej lub bardziej sztywnych połączeń, tworzących ścieżki przejścia. Jeżeli system składa się z N ścieżek przejścia, wtedy całkowitą odpowiedź w kierunku oceny może być zapisana jako suma cząstkowych odpowiedzi z poszczególnych ścieżek:

$$p(o) = \sum_{i} \frac{P(o)}{F(o)} f_i(o)$$

gdzie: $p(o)$ - odpowiedź w kierunku oceny, która może być funkcją częstotliwości lub obr/min

$P(o)$ - to WFP pomiędzy kierunkiem oceny, a źródłem (siłą lub $F(o)$ prędkością akustyczną cząstki) dla ścieżki przejścia i.

$f_i(m)$ - siła lub prędkość cząstki akustycznej dla ścieżki przejścia i.

Aby przeprowadzić analizę rozchodzenia się energii w konstrukcjach musimy zbudować kompletan macierz widmowych funkcji przejścia. Widmowe funkcje przejścia muszą zostać zarejestrowane dla wszystkich ścieżek przejścia do danego kierunku oceny. Wszystkie mogą być mierzone dla każdego źródła osobno aby wykluczyć nakładanie się wpływów poszczególnych sił.

Każdy kierunek w punkcie, który wybraliśmy jako miejsce, gdzie energia jest przekazywana od źródła do kierunku oceny, jest osobną ścieżką przejścia. Należy przeprowadzić pomiar WFP w tych punktach. Jako urządzenie wymuszające może być stosowany młotek modalny lub wzburnik elektrodynamyczny. Odpowiedź może mieć charakter mechaniczny lub akustyczny. Akustyczne ścieżki przejścia są przeważnie mierzone w sposób odwrót. Wyznaczenie jest realizowane przy pomocy głośnika w punkcie wybranym jako ścieżka przejścia, a odpowiedź jest mierzona mikrofonem w punkcie działania wymuszenia.

4. Dane niezbędne do przeprowadzenia analizy

Wzór (3) ujawnia, iż do przeprowadzenia analizy rozchodzenia się energii w konstrukcji niezbędna jest pełna macierz widmowych funkcji przejścia oraz wektor sił wymuszających lub prędkości cząstki akustycznej. Nawet w warunkach laboratoryjnych niemiłosiernie jest zmierzenie niektórych sił operacyjnych (na przykład w kierunku stycznym do powierzchni konstrukcji) bez modyfikacji konstrukcji mogącej zmienić parametry obiektu. Z tych samych powodów niemożliwe jest pomiar wszystkich WFP. Podobnie sytuacja ma się z prędkościami cząstki akustycznej.

4.1. Synteza brakujących widmowych funkcji przejścia

Obiekt poddawany analizie TPA musi spełniać następujące założenia:

- liniowość - odpowiedź układu jest proporcjonalna do wymuszenia działającego na badany obiekt,
- stałość współczynników modelu modalnego w czasie eksperymentu,
- spełnienie zasady wzajemności Maxwellla, zakładającej, że charakterystyki zebrane w punkcie A na konstrukcji przy wymuszeniu układu w punkcie B są takie same jak przy wymuszeniu w punkcie A i pomiarze w punkcie B,
- obserwowalność układu,
- małe lub proporcjonalne tłumienie w badanym układzie.

Są to założenia, które musi spełniać obiekt, aby mógł być poddany analizie modalnej [7], [9]. Dlatego też na podstawie widmowych funkcji przejścia, które mogły być zmierzone, staramy się wybudować model modalny obiektu. Znając model modalny obiektu możemy dokonać syntezy brakujących funkcji przejścia [3], [7], [9].

4.2. Identyfikacja prędkości cząstki akustycznej

Jeżeli rozważamy źródło akustyczne to jego powierzchnia pro- mieniąca fale jest dzielona na mniejsze obszary i przy jego opi- sie, oceniane są osobno prędkości pojemnościowe poszczególnych obszarów. Prawidłowy podział powierzchni źródła jest bardzo istotny z punktu widzenia dalszej analizy i poprawności jej wyników [1]. Użyczenie może być wskazówka, iż wzmocnienia poszczególnych obszarów powinny być mniejsze niż najmniejsza długość fali akustycznej z analizowanego zakresu częstotliwości podzielona przez 6. Prędkości akustyczne cząstki Q są więc używane do zestawienia wektorów obciążen i mogą być wyliczone kilkoma metodami [1]:

- próbkowanie powierzchni punkt po punkcie,
- metoda odwracania macierzy,
- metoda pomiaru natężenia.

Metoda próbkowania powierzchni punkt po punkcie pozwala na wyznaczenie zazwyczaj prędkości cząstki akustycznej źródło na podstawie pomiaru przyspieszeń drgań obszarów powierzchni emisyjną. Zakładając, że przyspieszenie zmierzone w danym punkcie w kierunku normalnym do powierzchni reprezentuje profil przyspieszenia, który może być wykorzystany do oceny prędkości cząstki akustycznej całej powierzchni. Zalożenie to wymaga podziału całej powierzchni emisyjnej na mniejsze obszary, w których może ono być spełnione. Przyspieszenia cząstki akustycznej q_j każdej z m próbkowanych obszarów S_j są wyliczane jako iloczyn pola powierzchni obszaru przez przyspieszenie mierzone w środku obszaru w kierunku normalnym. Prędkość cząstki akustycznej q_j jest wyliczana przez całkowanie przyspieszenia. Do wykonania pomiarów najczęściej używa się czujników akcelerometrycznych, stąd konieczność całkowania. Pomiary wykonywane przy pomocy skanowania laserowego pozwalają na bezpośrednie wyliczenie prędkości cząstki akustycznej bez konieczności dokonywania całkowania.

Metoda odwracania macierzy jest używana do wyznaczania niewprost prędkości cząstki akustycznej źródła. W tym celu mierzone są odpowiedzi p_j w postaci ciśnienia akustycznego w pobliżu emisyjnego źródła w określonych punktach j. Następnie zestawiana jest macierz bliskopoloowych WFP $H(j)$ pomiędzy ciśnieniem akustycznym zmiennym w punktach j, a prędkością cząstki akustycznej emisyjnej powierzchni. Przy pomocy tych danych prędkość cząstki akustycznej jest wyliczana ze wzoru:

$$q_j = [H(j)]^{-1} p_j$$

Funkcje przejścia są mierzone przy wykorzystaniu zasady wzajemności Maxwellla. W miejscach, gdzie mierzone było ciśnienie akustyczne, ustawiane są głośniki, a mikrofony rejestrują odpowiedzi na powierzchni źródła, które w czasie tych pomiarów jest wyłączone. Pomiar mikrofoniowy wykonywany jest w i punktach, na które została zdystrybuowana powierzchnia źródła. Zarejestrowane w ten sposób WFP $H(j)$ zgodnie z zasadą wzajemności są równe szukanym $H(j)$. Podstawiając metody pomiaru natężenia są pomiaru w polu bliższym natężenia dźwięku generowanego przez źródło, które mogą być przeprowadzone w komorze bezchefowej. Wyniki takich pomiarów jest moc akustyczna źródła w warunkach bezchefowych. Na podstawie znajomości mocy akustycznej, można wyliczyć prędkość cząstki akustycznej. Przy założeniu, że prędkość cząstki akustycznej źródła jest niezależna od zmiany akustycznych warunków brzegowych. Z pomiarów wykonanych w koro- rze bezchefowej wyznaczamy średnią natężenie dźwięku po- wierzchni pomiarowej S wokół źródła. Powierzchnia S jest dzielona na n mniejszych obszarów, z których każdy traktowany
jest jako osobne źródło cząstek. Całkując iloczyn skalarny średniego natężenia dźwięku przez wektor normalny po powierzchni otaczającej powierzchnię moc akustyczną. Dalej, przy pewnych założeniach, można zapiszać następującą zależność pomiędzy prędkością cząstki akustycznej q_j, a mocą akustyczną N_j:

$$ q_j = N_j \frac{2\pi c}{\rho \omega^2} $$

gdzie:
- c - cząstkowa prędkość powietrza,
- ρ - gęstość powietrza.

Ponieważ wyliczamy kwadrat prędkości cząstki akustycznej metoda ta nie daje informacji o fazie wymuszenia. Stanowi to ograniczenie przy niskich częstotliwościach, gdyż dla tych zakresów informacja o fazie pozwalającą na ocenę, czy odpowiednie źródła nie są skorelowane.

4.3. Identyfikacja sił eksploatacyjnych

Podobnie jak w wypadku prędkości cząstki akustycznej dla analizy rozchodzenia się energii pochodzenia akustycznego, przy wymuszeniu mechanicznym i rozpatrywaniu strukturalnych siedzeń przejścia, niezbędna jest znajomość sił eksploatacyjnych działających w tych siedzeniach, a dochodzących od źródeł dźwięku. Siły te mogą być zmierzone wprost przy pomocy czujników siły, jednakże nawet w warunkach laboratoryjnych często nie jest to możliwe bez takiej modyfikacji obiektu, która istotnie wpływa na jego dynamiczne. Dlatego praktycznie niemożliwe jest przeprowadzenie analizy rozchodzenia się energii dźwięku bez zastosowania metod identyfikacji obciążeń na podstawie pomiarów odpowiedzi. Do tego celu stosuje się metody deterministyczne identyfikacji obciążeń [1], [2], [4]. Algotymy rozchodzenia się energii w konstrukcjach wykorzystują trzy metody: estymujące siły w siedzeniach przejścia, wszystkie operują w dziedzinie częstotliwości. Są to kolejno:

- metoda zespołowej sztywności dynamicznej,
- metoda odwracania macierzy WFP.

W przypadku, gdy siła przenoszona jest przez element podatny lub, którego sztywność jest mniejsza od sztywności reszty konstrukcji, siły eksploatacyjne f_{ij} mogą być zidentyfikowane przy pomocy metody zespołowej sztywności dynamicznej połączen $[K]$. Do przeprowadzenia metoda niezbędna jest znajomość macierzy $[K]$ oraz przemieszczeń po obu stronach Δx_j (od strony źródła siły), Δx_i (od strony pomiaru odpowiedzi) podczas pracy układu:

$$ f(0) = [K(0)][(X_{ij}(0)) - (X_{ij}(0))] $$

Drużka z metody oparta o odwracanie macierzy widmowych funkcji przejścia działa analogicznie jak opisana metoda wyznaczania prędkości akustycznej cząstki. Przeprowadzając wtedy $t(\omega)$ odpowiedzi na wymuszenie w pewnej ilości n punktów pomiarowych można zidentyfikować wektor sił działających $f(\omega)$ wyznaczając macierz pseudo-widmową do macierzy $H(\omega)$ (o wymiarach $n \times m$) wg zależności:

$$ f(\omega) = [H(\omega)]^{-1}(\rho(\omega)) $$

Niekotóre elementy macierzy $H(\omega)$ można wyznaczyć bezpośrednio eksploatacyjnie wykorzystując np. metodę testu impulsowego. Należy zauważyć, że jeżeli w przypadku rozważanego obiektu spełniona jest zasada wzajemności ($H_{ij} = H_{ji}$), to wymuszenie impulsowe można przykładać zarówno w punkcie, w którym działa siła, jak i w punkcie pomiaru sygnału odpowiedzi (wduty sygnał odpowiedzi jest mierzony w punkcie i kierunku działania siły). Wyznaczenie eksploatacyjne wszystkich wymaganych widmowych funkcji przejścia (WFP) jak już wspomniano nie jest możliwe. Powoduje to konieczność wykorzystania do określenia niektórych elementów macierzy $H(\omega)$ modelu modalnego rozważanego obiektu. W badaniach modalnych wyznacza się zwykle 1, 2 lub bardzo rzadko 3 i więcej wierszy lub kolumn macierzy $H(\omega)$. Pozostałe elementy są określone przy założeniu spełnienia zasady wzajemności. Macierz $H(\omega)$ może być również wyznaczona na podstawie modelu elementów skończonych, który został uprzednio dostrojony do eksperymentalnego modelu modalnego. Ma to szczególne znaczenie w praktycznym przypadku, gdy ze względów technicznych w czasie eksperymentu nie ma możliwości, ani pomiaru sygnału odpowiedzi t_ω, ani tym bardziej przyłożenia siły w obszarze badanego obiektu odpowiadającym obszarowi wymuszenia.

Przeprowadzenie nadmierowego pomiaru sygnałów odpowiedzi na wymuszenie $(n \geq m)$ oraz zastosowanie rozkładu na wartości szczególne (osobliwe) pozwala polepszyć uwarunkowanie numeryczne poszukiwania pseudo-widmowej macierzy charakterystyk widmowych.

5. Implementacja programowej algorytmów analizy dróg rozchodzenia się energii

Obecnie na rynku istnieje kilka pakietów realizujących algorytmy analizy dróg rozchodzenia się energii dźwięku. Tutaj wymienić można takie programy jak CADA - X, moduł TAPA firmy LMS Int. [1], czy SPID firmy INRIA [8]. Są to jednak drogie przybory, dodatkowo dedykowane do przemysłu środowisk transportu. Kolejną wadą wszystkich tych pakietów jest zamkniętość kodu, brak możliwości jego edycji. Sytuacja taka uniemożliwia praktycznie modyfikację istniejących algorytmów, a co za tym idzie próbę zastosowania ich w inny sposób niż wskazany przez wytwórce. W celu przetestowania proponowanych metod podjęto próbę zastosowania ich do omawianych zadań np. do diagnozowania utworzonego nowe oprogramowanie. Jako środowisko programowania wybrano pakiet Matlab z uwagi na następujące jego cechy:

- łatwość testów logicznych, optymalizacja procesów numerycznych,
- łatwość obsługi, rychłość działania,
- możliwość edycji warunków podstawowych, w tym możliwości testowania, które są dostępne dla użytkownika,
- możliwość wizualizacji wyników,
- możliwość szybkiego wprowadzania modyfikacji istniejących procedur,
- otwartość kodu, łatwy import i export danych,
- specyficzność dla różnych platform sprzętowych.

Dodatkowym argumentem przyciągającym za zastosowaniem środowiska Matlab był fakt, iż w zespole, którego autorzy mniej więcej pracują, rozwijane jest oprogramowanie dedykowane do analizy dróg rozchodzenia się energii w konstrukcjach będące stanowiskiem jego zastosowaniem. Matlab, ponadto, umożliwia bezpośredni dostęp do danych pomiarowych. Możliwość tworzenia bibliotek z ściśłą integracją algorytmów pomiarowych SigLab ze środowiskiem Matlaba [12]. SigLab sterowany jest z poziomu Matlaba przy pomocy złącza SCSII. Wszystkie dane pomiarowe zbierane przez analizator przesyłane są do Matlaba. Tutaj następuje ich dalsze przetwarzanie, archiwizacja i identyfikacja. Wstępne przetwarzanie odbywa się na drodze sprzętowej w SigLabie, dzięki jego konstrukcji opartej na technologiach procesorów sygnałowych. Umożliwia ono na przykład liczenie transformacji Fouriera w czasie rzeczywistym w szerokim paśmie częstotliwości.
Środowisko
Matlab a wraz z
toolboxami

Przybornik
VIOMA

Graficzny
Interfejs
Użytkownika

Pawsta
moduł

Analizator
pomiarowy
SigLab

Rys. 3. Schemat przedstawiający architekturę powstałego modułu

Głównym elementem systemu przedstawionego na rysunku 3 jest środowisko Matlaba, które umożliwia przeprowadzenie niezbednych obliczeń oraz wizualizację wyników. Dane zbierane i wstępnie przetwarzane przez SigLaba, przesyłane są do przestrzeni roboczjej Matlaba, tam poddawane są dalszej obróbce przy pomocy przyborników Matlaba zwanych też toolboxami. Zapis danych do odpowiedniego formatu następuje w przyborniku VIOMA, skąd są wczytywane do powstałego modułu. Użytkownik wykonuje wszystkie operacje przy pomocy graficznego interfejsu.

5.1. Opis utworzonego narzędzia programowego

Na podstawie sformułowanych założeń oraz zgodnie z przedstawionymi procedurami obliczeń opracowano narzędzie dedykowane do analizy dróg rozchodzenia się energii drgań w konstrukcjach. Na rysunku 4 przedstawionogląd głównego okna programu oraz okna menadżera danych.

Rys. 4. Okno główne i graficzny interfejs menadżera danych

6. Podsumowanie

Obiekt poddawany analizie dróg rozchodzenia się energii drgań musi spełniać te same założenia jakie wymagane są przy stosowaniu analizy modalnej. Bazując na modelu modalnym obiektu prezentowana analiza pozwala na identyfikację źródeł, zarówno mechanicznych, jak i akustycznych oraz na ocenę ich wpływu na parametry mierzony w kierunku oceny. Ponadto określa którąś energię przekazywaną jest od źródła do kierunku oceny.

 Wyniki analizy rozchodzenia się energii wykorzystywane są zarówno do rozwiązania problemów eksploatacyjnych typu zbyt wysoki poziom drgań lub hałasu, wówczas analiza jest realizowana na obiekcie rzeczywistym, jak i na etapie konstrukcji, gdzie analizie poddawane są modele elementów skonstruowanych. Przedstawione powyżej zalety sprawiają, że algorytmy analizy dróg rozchodzenia się energii w konstrukcjach są przydatnym narzędziem przy ocenie poziomu drgań i hałasu w konstrukcjach.

Litrataura

Title: Transfer path analysis as modern technique in experimental assessement of means of transport safety and comfort.