Pomiar ilości gazu wydzielającego się z mas formierskich

Dr inż. Mariusz R. RZAŻA

Streszczenie
W pracy przedstawiono przepływomierz do pomiaru bardzo małych przepływów gazu, rędu kilku do kilkunastu m/mn. Metoda polega na zliczaniu małych objętości elementarnych gazu. Objętości elementarne są wytwarzane w postaci pęcherzyków gazu unoszących się w cieczy. Pomiary objętości pęcherzyków polega na przesiewaniu pionowej kolumny jednorodną wiązką światła, a następnie detekcji strumienia światłowego za pomocą układu detektorów światłowodowych. Detekcja polega na określeniu, w której części pola widzenia detektoru znajduje się pęcherzyk, co stanowi informację o jego wymiarze. Następnie sygnały z detektorów są zamieniane na sygnały elektryczne w przetworniku pomiarowym, skąd są rejestrowane na komputerze.

Abstract
Small The group of measurement in industry and laboratory contains measurement of gas flow. The measurement of gas capacity is generally marking capacity of test pool. Because capacity types of gasses different methods and measurement devices are used.

In the paper constructive solution of measurement flow-device for the measurement of the flow of gasses from a few to several m/b was introduced. This method refers to counting a small amounts of elementary capacities of gas. Elementary capacities are produced in the shape of gas bubbles flowing in the liquid. Bubbles are produced by the help of nozzle placed in the bottom of measurement container which is fulfilled with liquids. The bubbles flowing is registered on the computer. Then, on this basis their capacity is calculated and the sum to the capacity of the given unit of five is the basis for calculation of stream flow. Measurement of bubbles is the ray of vertical column whit light wave and then detection of the light way by the detectors. The detection of light ray is depicting the section of detector where the bubble is. The detector signals are changed on electric signals in interface from where they are registered on the computer.

In the paper is presentet detailed algorithm of measurement capacity and the gas flow and the results of the test are her presented.

Słowa kluczowe: metody optyczne, pomiary przepływu, przepływ gaz-ciecz

Keywords: gas flow, optical method, gas-liquid flows

1. Wstęp
Rosnące wymagania jakościowe, stawiane produkтом stosowanym w przemyśle metalurgicznym, powodują konieczność jednoznacznego określenia ich parametrów. Jednym z komponentów mających za-
sadniczy wpływ na chropowatość powierzchni oddawanych gazów jest masa formierska. Do każdego rodzaju procesu odlewniczego konieczne jest zastosowanie mas w formierskiej lub rdzeniowej o ściśle dobranych właściwościach fizykochemicznych.

Jednym z bardzo ważnych parametrów masy formierskiej jest ilość i dynamika wydzielających się gazów podczas procesu odlewania. Zastosowanie mas formierskich o małych zawartościach gazów ma szczególne znaczenie przy odlewach o znacznym stopniu złożoności np. przy odlewach głowic, lub bloków silników spiłowych. Odlewy skomplikowane, przy niedużych otworach odprowadzających i dużym stopniu wypełnienia wnętrza rdzeniami z mas piaskowych wymagają doboru materiałów wiązających i ustalenia technologii wykonania rdzeni powiązanych z pomiarami ilości wydzielanych gazów. W przypadku nadmiernego wydzielania gazów, istnieje możliwość przetestowania innych komponentów, lub modyfikacji cyklu suszenia mas formierskich. Praktycznie każda odlewnia metali powinna być wyposażona w urządzenie do oznaczania ilości wydzielanych gazów z masy formierskiej.

Pomiary ilości i strumienia przepływających gazów należą do grupy pomiarów najczęściej wykonywanych w laboratoriach i przemysle. Objętość gazu jest funkcją ciśnienia i temperatury, dlatego zwykle zmierzona objętość redukuje się do warunków normalnych (273,15 K i 0,1013 Mpa). Pomiar objętości gazu w zasadzie sprowadza się do oznaczenia objętości zbiornika. Ze względu na różne rodzaje gazów stosuje się odpowiednie metody i przyrządy pomiarowe.

Opisane w pracy [1] metody pomiarowe nie nadają się do pomiaru zagazowania mas formierskich, ze względu na małą objętość wydzielonego gazu (10 do 40 dm³/g badanej próbki) oraz konieczność wyko- nania pomiaru pod ciśnieniem atmosferycznym (bez sprężania mie- rzonego gazu).

Obecnie stosuje się do oznaczania ilości wydzielania gazów urzą- dzenie, opisane w normie BN-76/4024-05 „Odlewne materiały i masy formierskie. Oznaczanie ilości wydzielanych gazów”. Urządzanie to składa się z piecyka, koniecznego do podgrzania próbki do temperatury 1000°C i biurety pomiarowej, do której zbiera się wydzielany gaz. Biurca pomiarowa dołączana jest układem naczyń półczyn- nych do zbiornika wypierającego ciśnienie mierzzonego gazu do ciśnienia atmosferycznego. Oprócz całkowitej ilości gazu, bardzo ważna jest dynamika jego wydzielania w funkcji czasu. Wymaga to odczytu poziomu cieczy w biurcie pomiarowej co 5 sekund, przez czas po- miaru około 5 do 10 minut, przy jednoczesnym przechwyceniu zbiorni- ka wypierającego ciśnienie. Ponieważ oznaczenie takie jest obarczo- ne dużymi błędami odczytu, w każdym cyklu wykonuje się trzy oznaczenie i do wyniku bierze średnią arytmetyczną. Powyższa metoda nie nadaje się do automatyzacji pomiaru, ponieważ nie można w prosty sposób przetworzyć zmian poziomu cieczy w biurcze (przy spełnieniu warunku braku sprężania mierzonego gazu) na sygnał elektryczny i jego zapis.

2. Idea metody pomiaru automatycznego
Metoda polega na zliczaniu małych objętości elementarnych gazu. Objętości elementarne są wytwarzane w postaci pęcherzyków gazu unoszących się w cieczy (rys. 1). Pęcherzyki wytwarzane są za pomocą dyszy umieszczonej w dnie naczynia wypełnionego cieczą. Przepływ pęcherzyków przepływających swobodnie w nieruchomej cieczy jest
rejestrowany na komputerze. Następnie na tej podstawie jest oblicza-
na ich objętość a suma objętości w danej jednostce czasu stanowi pod-
stawę do obliczenia natężenia przepływu.

Pomiary objętościę pęcherzyków polega na obserwacji kontynuacyj-nej kolumny jednorodną wiązką światła, a następnie detekcji strumienia
świetlnego za pomocą układu detektorów światłowodowych [7]. De-
tekcja promieniowania światła polega na określaniu, w której części
pola widzenia detekторa znajduje się pęcherzyk. Sygnały z detektorów
są zamieniane na sygnały elektryczne w przetworniku pomiarowym, skąd są rejestrowane na komputerze.

Głównym problemem w zastosowanej metodzie jest wytworzenie
pęcherzyków o odpowiednich wymiarach oraz regularnym kształcie.
Ma to wpływ na dokładność pomiaru. W celu doboru odpowiednich
parametrów urządzenia, do wytworzenia odpowiednich pęcherzyków,
należy rozważyć zarówno proces tworzenia się pęcherzyków jak i ich
ruch w cieczy.

2.1. Analiza procesu tworzenia się pęcherzyków gazu

Proces tworzenia się pęcherzyków gazu na końcu cewy dyszy można
opisać za pomocą równania sił działających na pęcherzyk. Ponieważ
pełny opis matematyczny obejmuje układ pięciu równań różniczko-
ych (równanie Naviera-Stoksa, równanie ciągłości i równanie stanu)
zarówno do gazu jak i cieczy. Rozwiązanie analityczne często jest nie-
możliwe. Z tego względu niejednokrotnie stosuje się modele uprosz-
czone pozwalające na określenie przybliżonych wartości średnicy pę-
cherzyków tworzących się na końcu dyszy [3, 4].

W przepływie swobodnym pęcherzyki tworzą się na końcu dyszy. Ich kształt jest zbliżony do kuli, ponadto pęcherze tworzą się w pojedynczym otworze kowłowy, poziomym i unoszą się ku gó-
rze.

Rys. 1. Tworzenie się pęcherza w przepływie swobodnym

Fig. 1. Bubble formation in an unrestricted flow

W modelu tym zakłada się, że objętość jaka przepływa przez rurę
spowoduje zwiększenie objętościę pęcherzyka [12]. Pomija się nato-
miast w tym modelu siły związane ze ściśliwością gazu. Równanie
bilansu sił układu pokazanego na rys. 1 ma następującą postać

\[W + B - G - F = 0 \]
(1)

gdzie: \(W \) - siła wyporu, \(F \) - siła napięcia powierzchniowego, \(G \) - ciężar pęcherzyka, \(B \) - siła bezwładności.

Stąd wzór na średnicę pęcherzyka przyjmuje następującą postać:

\[d = \frac{6 \sigma d_0}{g (P_C - P_0)} + \frac{p_G}{P_C - P_0} d_0^2 v \]
(2)

gdzie: \(r_c \) - gęstość cieczy, \(r_g \) - gęstość gazu, \(d \) - średnica otworu, \(v \) - prędkość wypływu gazu z dyszy, \(s \) - współczynnik napięcia powierzchniowego cieczy.

Model ten jest słuszny dla dynamicznego tworzenia się pęcherzy-
ków, jednakże prędkość wypływu musi być na tyle mała żeby nie po-
wodowała deformacji pęcherzyków.

2.2. Budowa przepływomierza

Budowę przepływomierza przedstawiono na rysunku 2. Gaz dopro-
wadzony jest do dyszy 2 zamontowanej w dolnej części zbiornika po-
miarowego 1 wypelnionego cieczą o lepkościę rzędu \(\mu_c = 0,2 \) Pa·s
i napięciu powierzchniowym w granicach \(\sigma = 0,07 \) N/m. Proponuje
się zastosowanie oleju silnikowego MOBIL 1 5W/50, którego gęstość
wynosi \(p_g = 864,7 \) kg/m³. Zawór zwrotny 3 zabezpiecza przed wylewa-
niemi się oleju, a także przed zasianiem oleju w przypadku powstania
podejścia w układzie pomiarowym. Gaz wydostający się z dyszy
unoszą się w cieczy wypelniającej zbiornik w postaci pęcherzyków. Produ-

opowiednim doborze średnicy dyszy można uzyskać pęcherzyki o
regularnym kształcie i wydostające się w stałych odstępach czasu.
Stanowi to podstawę do pomiaru objętości unoszących się pęcherzy-
ków. Pomiary pęcherzyków realizowany jest na zasadzie skanowania
przekroju badanego i detekcji obecności w nim pęcherzyka gazu. Przec-
krój badany przesłanialny jest wiązką światła spójnego, emitowanego
ze źródła 4. W przypadku natrafienia wiązki światła na pęcherzyk gazu
ulega ona roztrzęsieniu na kilka składowych w wyniku czego następu-
je odbijanie wiązki światła docierającej do detektora światłowodo-
wego 5. Sygnały świetlne z detektora zamieniane są w przetworniku
pomiarowym 6 na sygnał elektryczny o standardzie TTL. Jako przet-
wornik proponuje się zastosowanie odbiornika TORX173 ze złączem
TOCP155 firmy TOSHIBA. Sygnał z przetwornika rejestrowany jest
na komputerze δ wyposażonym w 48 wejściową kartę pomiarową fir-
my AMBEX o symbolu PIO 055.

Rys. 2. Budowa przepływomierza

Fig. 2. A flow meter structure

Średnicę dyszy oblicza się na podstawie zależności 2 dla maksy-
malnego przepływu gazu przy założeniu, że średnica pęcherzyka nie
przekracza połowy długości detektora. W modelowym rozwiązaniu
zastosowano dyszę o średnicy 3 mm, co pozwala na uzyskanie pęcher-
zyków rzędu 6-10 mm przy długości detektora 24 mm.

2.2.1. Źródło światła

Źródło światła stanowi żarówka włókna umieszczona w osłonie
zwierciadła wklejonego z układem soczewek korygujących (rys. 3).
Żarówka powinna mieć kształt walca o długości większej od długości
detektora. Tego typu kształt zapewnia uzyskanie równomiernej na-
tężenia wiązki światła wzdłuż przekroju oświetlonego. Umieszczenie
żarówki \(J \) w ognisku zwierciadła 2 gwarantuje uzyskanie wzajemnie
równoległych promieni światłowych w kierunku pionowym. W celu lep-
szego ukierunkowania wiązki w kierunku poziomym zastosowano szereg
mini soczewek 3.

Rys. 3. Budowa źródła światła

Fig. 3. Light source
2.2.2. Detektor

Budowę detektora przedstawiono na rys. 4. Składa się on z rzędu światłoczątkowych 4 umieszczonych w tulejach koliacyjnych 3. Zastosowanie w pioneń oświetlonego czujnika w środkowej części detektora umożliwia pomiar prędkości ruchu pęcherzyka, co z kolei umożliwia wyznaczenie jego średnicy pionowej. Dla modelowego rozwiązania odległość ta wynosi $s = 4\text{mm}$. Rozdzielczość układu zależy od odstępu R, pomiędzy światłoczątkami oraz pola widzenia detektora, które można regulować długością szczeliny koliacyjnej czujnika światłoczątkowego, która wynosi $0,5\text{mm}$, co pozwala uzyskać dokładność pomiaru rzędu 5%. Regulację osiąga się poprzez przeniesienie płytki ruchomej l z zamocowanymi na stałe światłoczątkami względem nieruchomej płytki 2 z zamocowanymi tulejkami koliacyjnymi.

Rys. 4. Detektor światłoczątkowy

Fig. 4. Wave guide detector

2.2.3. Oprogramowanie

Do rekonstrukcji obrazu zastosowano algorytm inteligentny oparty na sieciach neuronowych. Umożliwia to użyczenie obrazu z dobrej jakości, przy optymalnym czasie obliczeń.

Rekonstrukcja polega na przybliżeniu kształtu pęcherzyka szeregiem wałków (rys. 5) [8]. Określenie kształtu pęcherzyka jest realizowane poprzez wyznaczenie objętości wałków o wysokości d_j.

Rys. 5. Przybliżenie kształtu pęcherzyka: a) idea, b) przybliżenie wałkami

Fig. 5. Approximation of a bubble shape a) idea, b) approximation by cylinders

Obliczenie objętości pęcherzyka polega na zsumowaniu objętości wałków składających się na pęcherzyk, wzór na objętość przyjmuje następującą postać:

$$V_p = \sum_{i=1}^{n} V_i = \frac{d}{4} \sum_{i=1}^{n} d_i^2$$

gdzie: V_i - objętość składającej jednegoplastra, d_{i0} - średnica plastra i-tego plastra, d_j - wysokość plastra, n - liczba plastrów składających się na pęcherzyk.

Wyznaczenie przesunięcia d_j pomiędzy poszczególnymi elipsoidami polega na obliczeniu drogi przebytej przez pęcherzyk pomiędzy kolejnymi paramiami. Jest ona uzależniona od prędkości poruszania się pęcherzyka oraz od czasu próbokowania, zgodnie ze wzorem

$$d_j = w_j t_p$$

gdzie: t_p - czas próbokowania, w_j - prędkość pęcherzyka.

Wyznaczenie prędkości poruszania się pęcherzyka następuje na drodze analizy przebiegów sygnałów pomiarowych pochodzących z odpowiednich sond optycznych znajdujących się w górnej i dolnej warstwie detektora pokazanych na rys. 4. Typy przebieg sygnału wyjściowego z przetwornika pomiarowego, pochodzącego z dwóch sond optycznych przedstawiono na rys. 6. Przebieg S_y pochodzi z sondy znajdującej się w górnej warstwie, a przebieg S_d z sondy znajdującej się w osi poniżej w warstwie dolnej.

Rys. 6. Typowe przebiegi czasowe zarejestrowane za pomocą karty pomiarowej

Fig. 6. Typical time courses registered with a measuring card

Na zarejestrowanych przebiegach czasowych obserwuje się prze- suwanie czasowe związane z ruchem pęcherzyka pomiędzy sondami pomiarowymi (N_y i N_d). Jest to czas potrzebny na przebycie przez pęcherzyk odległości L, pomiędzy dolną a górną warstwą czujników. Ponieważ pomiar czasu jest obarczony błędem, niekoniecznie odpowiadającym warunkom pomiarowym, określa się s jako $\frac{1}{2} (N_y + N_d) T_p$.

Wyznaczony odległość pomiędzy warstwami detektora, N_y, N_d - liczba taktów zegara świadcząca o czasie przełotu czoła i tyłu pęcherzyka pomiędzy sondami S_y i S_d, czas próbokowania.

Prędkości średnie wyznacza się na podstawie obliczenia średniego czasu przesunięcia pomiędzy przebiegami S_y i S_d

$$w = \frac{s}{n_s T_p}$$

gdzie: n_s - średnia liczba taktów zegara.

Liczba taktów zegara n_s została określona metodą korelacyjną. Poprzez określenie liczby n dla której wartość funkcji korelacji osiąga wartość maksymalną

$$R_{max} = \frac{N_{y0}}{n_{s0}} d_j^2$$

gdzie: d_j - dane pomiarowe pochodzące od czujnika dolnego, d_j - dane pomiarowe pochodzące od czujnika górnego, N_y, N_d - całkowita liczba próbek badanych sygnałów.

Proces rekonstrukcji obrazu polega na tym, że dane z pomiaru po wstępnym przetworzeniu na postać binarną są gromadzone w pamięci komputera. Po zarejestrowaniu całej sekwencji pomiarów następuje segmentacja danych, mająca na celu wydzielenie tych danych które mają znaczący wpływ na rekonstruowany obraz. Na tej podstawie wydzielane są cechy obiektu w oparciu o które, za pomocą odpowiedniego algorytmu, rekonstruuje się obraz pęcherzyków.

Typowe obrazy pęcherzyków przedstawiono na rys. 7. Obrazy pochodzą z dwóch detektory ustawionych pod kątem prostym względem siebie. Linia przerwana określa granicę obrazu z poszczególnych detektora. W etapie segmentacji dokonuje się wydzielenia z obrazu stref niepewnych. Strefy niepewne to takie, w których liczba pęcherzyków dla obu przekrojów pomiarowych jest różna (rys. 7a). Następnie przeprowadza się wyznaczenie średnich geometrycznych dla
3. Podsumowanie

W oparciu o powyższą metodę zbudowano model urządzenia do pomiaru ilości i dynamiki wydzielenia gazów z masy formierskiej. Przeprowadzone badania wykazały pełną przydatność opracowanej metody pomiarowej. Na rys. 9 pokazano przykładowo zarejestrowany pomiar gazu wydzielanego z masy formierskiej o masie 2 g. Dla przedstawionego przykładu dynamika zmian przepływu waży się od 60 ml/min do 2 ml/min. W badaniach testowych stwierdzono, że zakres pomiarowy modelowego urządzenia zawierał się w granicach od 0,1 ml/min do 100 ml/min.

Rys. 9. Przykładowy pomiar gazu wydzielanego z 2 g próbki masy formierskiej
Rys. 10. Zależności przepływu zmierzonego w zależności od zadanej temperatury

Przetworzone rozwiązanie przepływomierza może znaleźć zastosowanie nie tylko w badaniu mas formierskich, ale także w wszelkiego rodzaju procesach suszenia, gdzie intensywność wydzielającego się gazu jest informacją o przebiegu procesu.

4. Literatura

[6] Owsowskim S.: Sieci neuronowe w metrolodii i w przetwarzaniu sygnałów, Metrologia Wspomagana Komputerowo, Tom 1 s.89-118, Rynia k/Warszawy 1999
cji cieczy, XXIX Międzyuczelniana Konferencja Metrologii, Lublin 10-12 wrześni
[9] Rząsa M.R.: Optyczna metoda pomiaru prędkości miejscowych pęcherzyków gazu w kolumnie wypełnionej cieczą; XVIII Międzynarodowe Sympozjum Na
kowe Studentów i Młodych Pracowników Nauki, Zielona Góra, kwiecień 1996
tions; Chemical Engineering Science, Vol.48, No. 19, 1993, s. 3417-3422

Title: Measurements of gas coming from moulding sands

Artykuł recenzowany
Artykuł dofinansowany przez Przemysłowy Instytut Elektroniki (reklama PIE - str. 23)