THE NEED FOR PROTECTION OF UNIQUE DECORATIVE LIMESTONE DEPOSITS IN POLAND

Jan Bromowicz, Beata Figarska-Warchol - Katedra Geologii Złożeowej i Górniczej, Wydział Geologii, Geofizyki i Ochrony Środowiska AGH, Kraków

W Polsce zaniedbano wykorzystania złóż silnie zlityfikowanych skał węglanowych dla produkcji materiałów dekoracyjnych na rzecz eksploatacji nastawionej na pozyskiwanie kruszyw. Wiąże się to często ze stosowaniem materiałów wybuchowych, co z natury rzeczy ma powodować powstanie spęków, które uniemożliwiają pozyskiwanie w przyszłości dużych, prostopadłościennych brył zwanych blokami. Sytuacja taka dotyczy złóż wapieni, które z racji szczególnych warunków pozyskiwania bloków czy też bardzo ograniczonego obszaru występowania ich szczególnie atrakcyjnych odmian powinny być zachowane wyłącznie dla produkcji materiału blocznego. Wśród nich są: położone w Gorach Świętokrzyźskich złóż wapieni dewońskich Bolechowice, permickich złóż wyżynnołużyckich i jurajskich wapienia Woł Morawicka, w obrębie Wyżyny Śląsko-Krakowskiej złóż wapieniołapowych z Dębinka oraz jurajskich wapieniołapowych Zalesia i Raciszczy. Istnieje pilna potrzeba zapewnienia prawnej ochrony złóż kaolinu o unikalnym wykształceniu.

In Poland, deposits of strong lithified carbonate rocks traditionally regarded as decorative materials are currently exploited as a source of raw material for aggregate production. This often involves the use of explosives, which provokes the formation of cracks. Their presence makes it impossible to obtain large, cubic blocks in the future. This situation applies to limestone deposits, which have special decorative features, exceptionally favourable conditions for obtaining blocks or a very limited area of occurrence. Among them there are deposits situated in the Holy Cross Mountains and in the Kraków-Częstochowa Upland such as deposits of Devonian limestones – Bolechowice and Dębink, Permian conglomerates – Zygmunówka and Jurassic limestones – Wola Morawicka, Zalesia and Raciszczy. There is an urgent need to ensure legal protection of mineral resources of dimension stones with a unique quality.

Wstęp

Ubiegłożarodacze, wiosenny przegląd czynnych wyrobisk kamieni dekoracyjnych i architektonicznych w południowo-zachodniej części naszego kraju pokazał, że w większości złóż zawierających skały o wysokiej wytrzymałości na ściskanie i małej nasiąkliwości produkowane jest kruszyw. Są wśród nich złóż silnie zlityfikowanych wapieni, posiadających zdolność przyjmowania faktury polerowanej, które od wieków wydobywane były w formie bloczków i wykorzystywane w postaci polerowanych płyt, detali architektonicznych i rzeźb jako tworzywo dekoracyjne. Ich opis znaleźć można w każdym opracowaniu polskich kamieni dekoracyjnych, w turystycznych przewodnikach, a także w szkolnych podręcznikach. Złoża te należą do grupy kopalin skalnych, ujętych w Bilansie zasobów kopalin i wód podziemnych w Polsce jako kamień łamanego i bloczny (dawniej kamienie drogowe i budowlane). Brak jest wśród nich wyraźnego wyróżnienia złóż kopaliny blocznych, co sprawia pojawienie się skłonności ich wykorzystania w formie łamanego, jako kruszywa. Wymikające z tego przekonanie o wielkich zasobach skał węglanowych w naszym kraju daje łatwość w podejmowaniu decyzji o produkcji kruszywa ze złóż materiału blocznego, nie bakać na to, że może to doprowadzić do powstania nowych spęków i zaniku możliwości wydobycia bloczków.

Złoże Bolechowice

Złoża wapieni dewońskich Bolechowice usytuowane jest w odległości 300 m od szosy Chęciny – Kielec, około 10 km na SW od Kielc. Znajduje się na stoku wzgórza usytuowanej na szlaku drogowym, rozciągającej się w kierunku NW-SE, tworzącym Pasemo Bolechowickie. Na wzgórzu są te o tyle wyparte wapieni dewońskich północnego skrzydła synkliny galicycko-bolechowickiej.

Profile fragmentu złóż odcisnięty jest w zachodniej ścianie dwupoziomowego kamieniołomu znana pod nazwą Panek. Rozciągłość ściany jest równoległa do krzywych boków prostokątnego obszaru złóżowego i osadzających je pod kątem 40° ku SW warstw, które widoczna miąższość wynosi około 50 m (rys. 1A). Jest to fragment profilu stropowej części formacji z Kowieli wyróżnianej jako górne warstwy sitkówczarskie przykryte tu przez detrytyczne warstwy stromatoporoidowe [17]. Utwory te reprezentują przełom środkowego i górnego franu [22, 28].
Szczeżółne, na tle innych wystąpien wapien wapien dewońskich Gór Świętokrzyskich, znaczenie odsłaniających się tu utworów predestynujące je do wykorzystania jako materiał dekoracyjny wynika z:
- wyraźnego i grubego uławienia,
- barw,
- obfitości i zróżnicowania w rozmieszczeniu skamieniałości,
- prawie ortogonalnego układu płaszczyzn podziałności,
- stosunkowo niewielkiego natężenia płaszczyzn podziałności.

W dostępnej w kamieniołomie części profilu 80% ławic wapieniaosiąga grubość ponad 0,5 m, a udział miąższościowy ławic ponad metrowych przekracza 50%. Taki zestaw grubych ławic z bardzo niewielkim udziałem łupków dobrze rokuj dla możliwości pozyskiwania bloków.

Barwy wapieni przewadza szaroobrazowe i szaroooliwkowe, a także jasnobrązowe, niekiedy z różowym odciением odbiegają tu od dominującej zwykle szarej barwy wapieni dewońskich. Fauna zawarta w opisywanych wapieniach jest gatunkowo mało zróżnicowana i złożona głównie ze stromatoporoidów, którym towarzyszą małe, koralowce, szkarłatniki i ślimaki [13]. Silnie rozwijają się też formy biogenicznego pochodzenia związane z działalnością bakterii i prostych głonów dające maty głonowe, a także kuliste onkoidal. Zróżnicowanie pod względem wielkości i formy występowania szczątków or-
organicznych powoduje duże urozmaicenie strukturalne widoczne na polerowanych powierzchniach (rys. 1C). Stromatoporydy o różnych kształtach i wielkości występują tu we fragmentach lub w całości zarówno w pozycji wzrostu, jak i przewróconych. Ich wielkość jest różna, mierzona w milimetrach bądź centymetrach, zwłaszcza w przypadku pokruszonych form krzaczastych (amfiporo), a nawet w metrach w przypadku form masywnych. Zniesiona jest ilość fasonów w poszczególnych łańcuchach, a także jej inwentarz. Spotyka się wapienie pletyczne z pojedynczymi jedynie amfiporami, a w innych miejscach wapienie z większymi ich nagromadzeniami, którym towarzyszą masywne stromatoporydy. W górnej części profilu niektóre łańcuchy odznaczają się dużą zawartością krynydoli lub też onkolidów. Wszystko to zwiększa możliwości uzyskiwania wielu odmian barwnych i strukturalnych opisywanych wapieni, dając okaży różnych ich komponowania. Część łańcuch ma charakter biostromy, zwłaszcza w dolnej części profilu. Wyróżniając z tego więźba organiczna mogła mieć wpływ na silniejszą lityfikację ich pierwotnie już sztymy szkielecie.

Orientacja płaszczyzny podzielnictwa wapieni w kamieniołomie Panek daje układ prawie ortogonalny, pomimo stromego zalegania warstw. Wynika to z odczynienia od pionu płaszczyzn ciosowych zespołu poprzecznego, który zapada ku północnemu wschodowi (rys. 1B). Odległości płaszczyzn podzielnictwa w zespołach wydzielonych wedle przyjętej metodyki oceny błoczeń [6] są największe dla ciosu poprzecznego, dając średnie 56 cm oraz zbliżone dla podłużnego i pokładowego, gdzie średnie wynoszą około 40 cm. Stąd też wskaźnik błoczności wyliczony dla bloku anizometrycznego jest większy a wynosi 44%, podczas gdy dla izometrycznego jedynie 33%. Wśród możliwych do uzyskania błoczek prawie połowe stanowią bardzo małe, o objętości w granicach 0,25–0,5 m³, przy czym udział bloków bardzo dużych (pow. 2 m²) przekracza 10%.

Znaczenie niższe wartości wskaźnika błoczności uzyskano dla innych złoże wapieni dewońskich Góra Świętokrzyskich. Dla kamieniołomów w pobliżu złoża Łągów III, mimo korzystnego układu płaszczyn podzielnictwa, przy prawie poziomym zaleganiu (rys. 2), wartość tego parametru nie przekroczyła 15%, a przy uwzględnieniu podziałowości pokładowej z rdzeni wiertniczych wynosił on dla całego złoża zaledwie 3,6% [5]. W złożu Osiny znana z rdzeni wiertniczych szał podziałowość pokładowa wapieni praktycznie eliminuje możliwości pozyskiwania bloków, gdyż w przeważającej części bloki prawdopodobieństwo wystąpienia spękanych z lożem w odległościach większych niż 0,5 m nie przekracza 0,2%. Również stopień rozdrobnienia materiału blokowego oceniony dla kamieniołomów w pobliżu złoża Łągów III jest większy niż w Bolechowicach, a udział bloków bardzo dużych wynosi zaledwie 1,4%.

Do powyższych argumentów przemawiających za koniecznością zacierania omawianego złoża dodać trzeba tradycję, wedle której kamieniołom Panek jest najstarszym, ciągle czynnym wyrobiskiem z kieleckim marmurem. Podawane są informacje o bolechowickim pochodzeniu tablicy z 1583 r. w Katedrze Kieleckiej [9] czy też o aktywności tego wyrobiska od początku powstania w 1876 r. Przedsiebiorstwa Kopalni Marmurów Kieleckich [10].

Złoże Zgumnówka

Obszar złoża Zgumnówka położony jest w odległości ok. 10 km na SW od Kiele, około 300 m na zachód od drogi Chęciny – Kielec. Znajduje się on na południowo-zachodnim skoku wzniesienia Czerwona Góra wchłonna w skład Psma Bolechowickiego. Sciany nieczynnego kamieniołomu odsłaniają kilka zlepieńców stanowiącą parkową pokrywę synkliny galążniczo-bolechowickiej (rys. 3A).

Zlepieńce w łańcuchach o średnicy od 0,2 do 2,8 m zalegają połogą z tendencją do nachylenia ku południowemu wschodu. Zasadniczą część skały, niekiedy ponad 50% jej objętości, stanowią równie oblężone otoczenia dewońskich wapieni z niewielką ilością dolomitów [14]. Ich średnice najczęściej waha się od 2 do 20 cm. Reprezentują głównie odmiany kolorytowe szare, ciemnoszare, brązowe i brunatne (rys. 3c). Spoiwo typu masywa czernone barwę i złożone jest z drobnych okruchów wapiennych, mikrytu, rud rhodanu, który towarzyszą minerala ilaste oraz hematyt. Spotyka się też partie z silnie rozwiniętymi żyłami białego kalęży pochodzenia hydrotermalnego [34]. Wszyści stopień lityfikacji opisanych skał sprawia, że przyjmują poler i utrzumują go izolowane od wpływów warunków atmosferycznych.

Konieczność zacierania złoża zlepieńców zgumnówskich wynika z:

- ograniczonego obszaru występowania unikalnego typu zlepieńca,
- bardzo dużych możliwości pozyskiwania bloków,
- bardzo niewielkiego stopnia rozdrobnienia materiału blokowego,
- tradycji związanych z eksploatacją tej kopalniny.

Unikalność zlepieńca w opisowanym złożu wynika zarówno ze sposobu wykształcenia jego spośród, jak też i składu materiału okruchowego. W zlepieńcach zawieronych w odległości zaledwie 1 km od omawianego kamieniołomu spośród zmienia się na piaszczysto-ilaste znacznie zmięszając zwięzłość skały [25]. Również kopalina rozpoznana w trakcie prób dokumentowania złoża Berberyńska w pobliżu Bolechowic zawiera większy udział składników ilastego w spółwie zlepieńca [26]. Nie bez znaczenia jest też skład materiału okruchowego omawianych skał. Jego jednolity, węglanowy charakter zapewnia obecność w podłożu elewacji chęcińskiej, stanowiącej źródło
materialu okruchowego [8].

Wykonane w ścianach kamieniołomu pomiary odległości płaszczyzn podzielności, przy dosyć regularnym ich układzie (rys. 3B) pozwoliły na ocenę wskaźnika blokowości. Okazało się, że jest on najwyższy spośród badanych złoże skał osadowych w Polsce i wynosi ponad 60% [5]. Pomiary te wykazały też, że stopień rozdrobnienia materiału blocznego jest niewielki, a udział bloków bardzo dużych o objętości powyżej 2,0 m³ przekracza 16%.

Małe rozdrobnienie materiału blocznego łączy się z tradycją, wedle której na zlecenie króla Zygmunta III Wazy wydobyto w opisywanym wyrobisku, dla niewiadomych potrzeb, dwa bloki o długości 8 m, które na polecenie Władysława IV zostały wykorzystane w Warszawie do konstrukcji w 1644 roku pierwszej kolumny zwanej zygmunтовską [9], której niezłe zachowane pozostałości znajdują się w lapidarium Zamku Królewskiego w Warszawie. Najstarsze informacje o wydobyciu marmurów w tym kamieniołomie pochodzą z 1602 r. [11].

Złoże Wola Morawicka

Kamieniołom złoża Wola Morawicka znajduje się w miejscowości o takiej samej nazwie w odległości około 18 km na południe od Kielc i około 700 m na zachód od drogi Kielce–Chmielów. Założony został w obrębie wychodni skał przynależnych do południowego obrzeżenia mezozoicznego
Gór Świętokrzyskich.

W kilkudziesięciometrowym fragmencie odsłoniętej w kamieniołomie serii złożowej ukazują się jurajskie (środkowoooksfordzkie) wapienie tuberolitowe, zwane morawickimi lub plamkowymi o barwie jasno- lub złotowożarnej [19, 21]. Charakterystycznym, wyróżniającym je składnikiem są obserwowane na przełamach ciemniejsze od tła plamki o zróżnicowanej wielkości i kształcie (rys. 4C). Często spotykana jest w nich fauna główników, ramienionogów, rzadziej gąbek i jeżowców, a także szwy stylolitowe.

Miąższośćławic waha się od kilkunastu do 200 cm, przy przewadze lawic o miąższościach 50–150 cm. Granice między nimi zaznaczone są wyraźnymi fugami, na ogół wolnymi od wkładek ilastych. W obrębie poszczególnych lawic daje się zauważyć zróżnicowanie barwy, ilości i wielkości plamek, stylolitów oraz fauny, bez zauważalnych tendencji w tym zakresie. Obserwowane warstwy zapadają pod kątem 20° ku południowi.

Konieczność ochrony przed innym, niż produkcja bloków, wykorzystaniem wapieni złoża Wola Morawiecka wynika z:
- dużych możliwości wydobywania bloków (rys. 4A),
- niewielkiego stopnia rozdrobnienia materiału blokowego.

Układ płaszczyzn podzielności jest bardzo regularny, zwłaszcza w zakresie orientacji ich poszczególnych zespołów, co warunkuje łatwość w uzyskiwaniu brył prostopadłościennych (rys. 4B). Korzystnie też kształtuję się natężenie występowania
nieciągłości. Średnia odległość płaszczyn ciosowych zespołu podłużnego w stosunku do rozciągłości warstw wynosi 1,18 m, zaś poprzecznego — 1,03 m. Najmniejszą średnią mają odległości płaszczyn podzielnosci pokładowej — 0,49 m. Istotne są tu też maksymalne odległości pomiędzy płaszczynami, które dla spęków ciosowych przekraczają 4 m, dla pokładowych zaś sięgają 2,6 m. Taki układ i natężenie płaszczyn podzielnosci powoduje, że kamieniołom złoża Wola Morawicka należy do najbardziej blocznych wyonisk marmurów technicznych, a wskaźnik bloczności przekracza tu 50%. W położonym w odległości około 2,5 km na NW w obrębie tej samej wychodni wapieni morawickich fragmencie złoża Morawica III oceniony wskaźnik bloczności jest o połowę mniejszy, przy bardzo zbliżonej orientacji przebiegu poszczególnych zespołów. Różnice uwidaczniają się też w stopniu rozdrobnienia materiału blocznego. W kamieniołomie złoża Wola Morawicka udział bloków bardzo dużych przekracza 16%, podczas gdy w Morawicy III wynosi 6%. Potwierdza to porównanie wielkości wydobytych bloków z obu złoż w latach 1996 i 1997. Wśród 300 bloków z Woli Morawickiej średnia objętość wyniosła 1,44 m³, a dla 550 bloków z Morawicy III — 0,44 m³ [20].

Złoże Dębniak

Złoże Dębniak położone jest we wsi o tej samej nazwie, usytuowanej pomiędzy dolinami potoków Eliaszówka i Racławka,
około 5 km na NE od Krzeszowic. W jego skład wchodzą oddalone od siebie o około 150 m kamieniołomy znane pod nazwami Dębniak Karmelicki (rys. 5A) i Dębniak Nowy. Kiedy traktowane jako jedno złoże w nowych opracowaniach dokumentacyjnych zostało rozdzielone na dwa mniejsze o nazwach Dębniak i Dębniak I. Wydobywano w nich bloki wapieni dewońskich znanych pod nazwami wapieni lub marmurów dębniczkich. Są to czarne, grubołaciwicowe wapień z fauną podobną do opisanej powyżej w wapieniach z kamieniołomu Panek, często ze skąpaniami zabliznionymi białym kalcym (rys. 5C).

Konieczność ochrony bocznych parti złoża wapien dębniczkich wynika z:
- unikalnego wykształcenia kopaliny rokującej możliwości pozyskiwania bloków,
- wielowiekowych tradycji związanych z wykorzystaniem marmurów dębniczkich.

Kompleks skal dewońskich, głównie węglanowych, osiąga na północ od Krzeszowic niższość około 400 m. Odsłania się on bezpośrednio lub pod przykryciem czarnej warstwy piaszczystych osadów, głównie czwartorzędowych, na obszarze około 3 km² położonym na zachód od doliny Czubrówki (Racławki). W ich obrębie wychodnie kilkudziestometrowego zestawu wapieni dębniczkich zajmuje zaledwie 0,48 km² (48 ha) i ciągną się pasem o szerokości od kilkunastu do 300 m, co miejscowość Siedlec na południu po Dębniak na północy. Niewielkie wapienie dębniczkich jest różnie oczyszczane na około 35 do 50 m [16, 18]. Są one podzieloną dolomitami ze Zbrzy i przykryte cienkołaciwicowymi czarnymi wapieniami margliastymi i marglami wydzielanymi jako wapień gruzlizowe.

Wapienie dębnickie ukazują się na powierzchni w jądrowej części okolicy Dębinka. Jej powstanie związane było z intruzją magmową, która wykorzystując złożenia wywołana uskokami wydwiżgłąła młodopaleozoiczne skały węglanowe tworząc asymetryczną brachyformą o charakterze kopury [1]. Bliska obecność magmowej intruzji jest często źródłem zmian kontaktowych w obrębie wapieni dębniczkich powodujących zmiany zabarwienia, ale też i obniżających możliwości pozyskiwania bloków [7, 12].

Skromny obszar wychodni, silne zaangażowanie tektoniczne powodujące skomplikowany obraz orientacji płaszczyzn podzielności (rys. 5B) oraz zjawiska kontaktowe są powodem bardzo niewielkich możliwości pozyskiwania bloków i to przy dużym stopniu rozdrobienia [2]. Jest to jednakże jedynie miejsce w naszym kraju, gdzie istnieją możliwości pozyskiwania bloków czarnych wapieni przyjmujących fakturę polerowaną. Wskazniky bliznowości określone dla fragmentów wspomnianych wyżej kamieniołomów rokujących największe możliwości uzysku bloków przekraczają 25%. Trzeba jednakże pamiętać, że wskazniki te określone dla całych złoże, ujawniające obecność mięsnych kompleksów wapieni gruzlizowych w nadkładzie wapieni dębniczkich były rzędu 0,4–1,3% [2].

W Górnictwie Świętokrzyskim pozyskiwano niegdysy bloki czarnych wapieni cechujących się złoża wapieni Kajetanów. Przeprowadzone oceny możliwości pozyskiwania bloków dały negatywne wyniki. Przyczyną były tu niewielkie możliwości ławic wapieni i duża udział przerostów lupkowych, które wraz ze znaczną miękkością nadkładu skała cechujących się i osadów czwartorzędowych spowodowały ekonomiczną nieopłacalność pozyskiwania bloków i skreślenie złoża z Bielska zasobów kopaliny w ołdeniach w Polsce.

Złoże dębnickie są najczęściej stosowanym kamieniem dekoracyjnym we wnętrzach budowli sakralnych Polski. Ich występowanie w okolicach Dębinka rejestrowane było już w średniowieczu. W opisach architektonicznych znane są one jako czarne marmur dębniak, siedlecki lub krakowski. Najstarsze zabytki wykonane z marmurów dębniczkich datowane są na początek XVII w. Są to głównie elementy wyposażenia kaplic w postaci nagrobków, epitafów, posadzek, schodów, balustrad, jak też fragmentów ołtarzy [29].

Złoża Zalesiaki, Raciszyn i Raciszyn II

Złoża Zalesiaki, Raciszyn i Raciszyn II, położone w niewielkiej odległości od siebie na Wyżynie Wieluńskiej, usytuowane są na południu i południowy zachód od Działoszyna. Zawierają szczególną odmianę wapieni jurajskich nazwaną przez A. Wierzbowskiego [32] skalistym wapieniem zalesiackim. Są to grubołaciwicowe, silnie zlityfikowane wapienie o barwach jasnych żółtobrązowych, żółtawoszarzy i żółtobrązowych, zawierające zwykle kierunkowo ułożone makropy i wielkości do kilku, a nawet kilkunastu centymetrów (rys. 6B). Wysoki stopień lityfikacji umożliwia nadawanie tej skały fakturę polerowaną, a obecność kawern powoduje, że wapienie, wśród kamieniarzy, jest blednie określany mianem travertynu.
Konieczność ochrony omawianych złóż wynika z:
- unikalnego charakteru występującego w nich materiału kamiennego,
- sprzyjających warunków dla uzysku bloków,
- ograniczonego obszaru występowania wychodni.

W serii złóżowych odsłoniętych w ścianach kamieniołomów występują wyłącznie grube lawice, których średnia miąższość wynosi około 2 m (rys. 6A). Można wśród nich wyróżnić wapienie różniące się stopniem lityfikacji i zawartością kawern [27]. Jako materiał dekoracyjny szczególnie interesującą jest silniej lityfikowana odniana kawernista. Ten rodzaj wapien z tak charakterystyczną barwą nie jest znany w Polsce poza opisanym obszarem.

Zasięg występowania wapieni zalesiackich jest ograniczony. Tworzą one plaską soczewkę o miąższości około 25 m, a ich wychodnie ciągną się pasmem szerokości około 7 km na długości 11 km od Trenbaczowa na NE do Patków na SW [33]. Obecność w profilu różnie zlitowanych wapieni powoduje, że konieczne jest znaczące pomniejszenie tego obszaru. Okazuje się, że największy udział karniastych, zwięzłych wapieni przypada na złóż Zalesiaki i maleje w kierunku złóż Raciszyń, położonego na SW od poprzedniego [27]. Jeszcze mniejszy jest on w złóż Raciszyń II o czym świadczy wyraźny wzrost średniej miąższości wapieni od 1,54% dla Zalesiaków do 2,72% w złóż Raciszyń II i odpowiednio spadek wytrzymałości na ścieśnienie od 79 MPa do 44 MPa.

Uwagi końcowe

Sugestie ochrony złóż zresztą szczególnie atrakcyjnych wapieni dekoracyjnych znaleźć można w wielu publikacjach [np. 15, 27]. Przed trzydziesto laty, po przeprowadzeniu oceny możliwości uzysku bloków z polskich złóż kamienia, przedstawiono propozycje ochrony złóż materiałów blokowych, w tym także wszystkich powyżej omówionych wapieni dekoracyjnych [4]. W tych samych czasach we wszystkich tych złóżach wydobywano bloki. Współcześnie prawie wszędzie eksploatacja prowadzona jest w kierunku produkcji kruszywa, często przy użyciu bryzan-tycznych materiałów wybuchowych, co powoduje ujawnianie się nowych spękających, prowadzących do zmniejszenia możliwości wydobycia bloków.

Według aktualnie obowiązujących kryteriów bilansowości [21] dla złóż kopalii budowlanych blokowych jednym z parametrów, jakie spełnić muszą złóż wapieni przyjmujących polecenie jest minimum 10% wskaźnik blokowalności. Dla złóż kopalii budowlanych nieblokowych oraz kopalii drogowych wartość takiego parametru nie jest niesienne w ogóle uwzględniana. Ograniczeniem przed „nieblokowym” wykorzystaniem złóż jest poniekąd kryterium, według którego zawartość węglanu wapienia nie może przekroczyć 90%. Zadziwiającym jest zatem fakt, iż we wszystkich czynnych, omawianych w artykule kamieniołomach, mimo znanej powszechnej częstotliwości chemicznej wapienia, złóż wapienia eksploatowane są na potrzeby produkcji kruszywa drogowego. Pozostałe wypadkowe wodzowisko, które nie lubi się ze względu na wpływ na powierzchnię wodną, zatrzymuje się w opisujemy obszarze.

Całkowitej ochrony złóż kopalini, w tym także kamieni blokowych, nie gwarantują także zapisy Ustawy Prawo ochrony środowiska [30], która tej tematyce poświęca tylko dwa artykuły (art. 125 i 126), przywiązuje w nich ogólne hasła rejonalnej gospodarki zasobami złóż. W praktyce „rejonalnym” okazuje się produkcja kruszywa z wyjątkowo cennego materiału blokowego. Odwołania do przepisów dotyczących planowania przestrzennego (art. 72 i 130 Ustawy P.o.ś.) oraz zapisy samej Ustawy o planowaniu i zagospodarowaniu przestrzennym [31] nie tylko nie zapewniają ochrony tych zasobów środowiska, ale także pozostają bez wpływu na uwzględnianie przyszłych potrzeb eksploatacji tych złóż.

Ochrona ukonsumowanych złóż kopalini blokowych, a nawet ich obszarów perspektywicznych mogłoby być realizowana podobnie jak ochrona gruntów roślinnych. Na mocy ustawy obszarze te mogłyby być chronione przez użytkowanie innym niż eksploatacja materiału blokowego. Wymagałoby to dodatkowego rozdzielenia w bilansie zasobów złóż kamieni blokowych od złóż kamieni drogowych. Wyznaczanie obszarów objętych taką ochroną, a także sama jej realizacja powinna znaleźć się w gestii jednego z Ministerstw: Gospodarki – ze względu na gospodarcze wykorzystywanie tych złóż, Środowiska – ze względu na piłną konieczność ochrony nieodnawialnych i wyjątkowych zasobów środowiska, Kultury i Dziedzictwa Narodowego – ze względu na potrzebę zachowania unikalnych źródeł pozyskiwania materiału do renowacji zabudowy budowlanych lub infrastruktury, w zakresie którego działań znajduje się gospodarka przestrzenna.
Literatura

[34] Zbroja S., Kula M., Migaszewski Z. M., 1998 – Nowe dane o żlepiowcach z kamiennolomu „Zygmontówka” w Górach Świętokrzyskich. Biul. PIG 379

Artykuł recenzował dr inż. Jerzy Górecki
Rękopis otrzymano 11.04.2011 r. *2281