ELEMENTY STEROWANIA NAPĘDAMI MECHANIZMU JAZDY
PODWZIA KOPARKI K42 KWB BEŁCHATÓW

STEERING ELEMENTS OF CHASSIS TRAVERSING GEAR DRIVE IN K42 EXCAVATOR
IN BEŁCHATÓWS BROWN COAL MINE

Maciej Wachowicz - Partner Serwis Sp. z o.o., Łódź
Grzegorz Drabik - Siemens Sp. z o.o., Katowice

W pracy opisano zmodyfikowany napęd jazdy koparki K42 z omówieniem wybranych części algorytmu sterowania łącznie z próbą wspomagania napędu śruby skrętu. Rozważań zostały poparte i zweryfikowane wykonaniem pomiarów momentów obrotowych silników na poszczególnych napędach. W powyższych pracach wykorzystano wielodrożni doświadczenia w programowaniu przekształtników prądu zmiennego niskiego napięcia, komunikacji przemysłowej i sterowników PLC, w szczególności w sterowaniu maszyn podstawowych górniczo odkrywkowego węgla brunatnego.

The text below describes modernized drive of bucket excavator K42. Chosen parts of algorithm and attempts to supporting of the turn drive are described. Considerations are supported and verified by measurements of the torques of every drive. Many years of experience in parameterization of frequency converters, programming of PLC and industrial communication in particular in control of machines for opencast mining, have been used.

Wstęp

W pierwszej połowie 2011 roku został wykonany remont koparki K42 należącej do KWB Belchatów. Modernizację podlegały między innymi napędy jazdy pojazdów tejże koparki. Istniejące napędy prądu stałego zostały zastąpione nowoczesnymi napędami prądu zmiennego, zbudowanymi w oparciu o przemienikę częstotliwości SINAMICS produkcji firmy Siemens.

Opis układu

Układ jezdny koparki składa się z trzech wahaczów, z których każdy wyposażony jest w dwie gąsienice (rys. 1.). Jeden wahacz jest nieruchomy względem podstawy (wahacz 3), a dwa są skrętne, umożliwiając w ten sposób dokonywanie manewrów koparką podczas jazdy. Każda z gąsienic napędzana jest osobnym silnikiem. Skręt realizowany jest za pomocą śruby skrętu napędzanego również asynchronicznym silnikiem klatkowym. W pierwotnym rozwiązaniu napęd śruby skrętu realizowany był w oparciu o silnik pierścieniowy.

Silniki gąsienic zasilane są z przemiennika częstotliwości typu SINAMICS S120. Przemiennik ten jest zbudowany z modułów zamontowanych w systemie dynamicznym i wymagajacych napędów wiertniczych. Duża precyzja sterowania w połączeniu z modułową budową pozwoliła na skonfigurowanie przemiennika dokładnie spełniającego wymagania stawiane w tej aplikacji. Topologia przemiennika częstotliwościowa została przedstawiona na rysunku 2.

Każdy silnik zasilany jest z osobnego fałownika – MM (Motor Module). Fałowniki zasilane są poprzez wspólny silnik prądu stałego z dwóch równolegle złączonych fałowników – SLM (Smart Line Module). Zastosowane fałowniki posiadają możliwość zwrotu energii do sieci zasilającej – co umożliwia realizowanie hamowania elektrycznego przy jeździe w dół popołudniowy bez konieczności stosowania rezystorów hamowania, które są elementami o dużych gabarytach i wydzielają znaczne ilości ciepła. Moduly SLM zbudowane są z tranzystorów IGBT. W związku z tym, że są to podzespoły w pełni sterowane, nie występuje w nich ryzyko uszkodzenia elementów moczy lub bezpieczników podczas pracy ze zwrotem energii w momencie gdy wyłączone zostaje napięcie zasilania. Zjawisko to było spotykane w starszych (tyrystorowych) konstrukcjach czterokwadrantowych fałowników. Przemiennik częstotliwościowy został tak dobrany, by umożliwić ciągłą pracę ze 150% obciążeniem silników. Doliczając możliwość przeciążeń (150% przez 60s w cyklu 30s) cały układ może pracować w pobliżu momentu krytycznego silników. Może to pozwolić na manewrowanie koparką nawet w najcięższych warunkach w ramach możliwości termicznych silników. Równolegle połączenie fałowników pozwala na zapewnienie odpowiedniej mocy oraz pozwala na pracę układu z pełnym obciążeniem z
Rys. 2. Topologia przemiennika częstotliwości zasilającego silniki gąsienic.

Przemiennik częstotliwości pracuje w trybie sterowania wektorowego z pomiarem prędkości obrotowej za pomocą enkoderu inkrementalnego. Algorytm ten pozwala na zachowanie bardzo dużej dokładności regulacji oraz wytwarzanie dużych momentów napędowych przy niskich prędkościach obrotowych.

Przemienniki częstotliwości SINAMICS S120 posiadają wydzieloną jednostkę sterowania (CU320) umożliwiającą sterowanie kilkoma falownikami i prostownikami. W przedstawionym rozwiązaniu jedna jednostka steruje parą gąsienic na jednym wahaczu. Takie rozwiązanie pozwoliło na bardzo szybkie i dokładne sterowanie każdą parą gąsienic, tak aby dążyć do wyrównywania momentów na silnikach. Algorytmy związane z wyrównywaním momentów realizowane są w jednostce sterującej bez konieczności angażowania nadrzędnego sterownika. Jednostki CU320 są w stanie dużo szybciej reagować na zmiany parametrów napędowych niż robilby to sterownik nadrzędny. Jednostki CU320 połączone są z modułami mocy poprzez szybki (100 Mbit/s) dedykowany protokół Driver Clq.

Układ jazdy sterowany jest z nadrzędnego sterownika, który przekazuje do napędów min. wartości zadane prędkości.

Napęd jazdy skrętu zrealizowany został na osobnym przemienniku tego samego typu (SINAMICS S120). Dla robota, ze względu na brak konieczności hamowania elektrycznego (śruba skrętu jest samohamowana), zastosowano prostownik bez zwrotu energii do sieci: typu BLM (Basic Line Module). Ze względu na brak potrzeby dokładnej regulacji prędkości obrotowej zrezygnowano z pomiaru prędkości za pomocą enkoderu inkrementalnego. Zastosowanie przemiennika częstotliwości pozwoliło na zmianę momentu napędowego silnika śruby oraz umożliwienie wykonywanie algorytmów wspomagających skręt.

Prędkości zadane jazdy obliczane są przez nadrzędną sterownik kontrolujący jazdę koparki, a w przypadku jazdy w skręcie prędkości dla poszczególnych silników przeliczane są na podstawie pomiaru kąta skrętu gąsienic. W celu zabezpieczenia układów mechanicznych napędu jazdy wprowadzono ograniczenia momentów napędowych, których kontrolą zajmuje się również sterownik nadrzędny.

Badania i regulacje

Przy zastosowaniu trybie sterownia przekształtnik częstotliwości regulujący prędkość obrotową silników napędowych dąży do uzyskania jak najmniejszego uchybu między wartościami prędkości zadanej oraz prędkości aktualnej. Powoduje to bardzo duże „uszytynienie” układu i pozbawia silnik naturalnej charakterystyki jaką posiada będuc zasłanianym z sieci. Tak zintegrowany układ napędowy w połączeniu charakterystyką mechaniczną koparki (sprężenie przez podłoże, luzy w układzie) powodował, że gąsienice nie obciągały się równomiernie. Niektóre gąsienice przejmowały rolę napędową podczas gdy inne z kolei hamowały lub były włączone. Role te są przyjmowane w zależności od podłoża po którym porusza się dana gąsienica, nachylenia terenu, wstępnego napięcia gąsienicy, kierunku jazdy i innych czynników, których charakter może być losowy. Najgorsze przypadki to te, w których na jednym wahaczu jedna z gąsienic napędza a druga hamuje. Prowadzi to do powstawania naprężeń w układzie mechanicznym oraz może powodować przeskok gwiazdy napędzającej gąsienicę.

Na rysunku 3 przedstawione zostały przykładowe wykresy momentu napędowego silników gąsienic dla jazdy na wprost, podczas gdy na rysunku 4 przedstawiono momenty silników gąsienic przy jeździe w skręcie. Pomiary wykonano wykorzystując funkcję „trace” w przemiennikach SINAMICS S120. Funkcja ta
Rys. 3. Wykres momentów silników gąsienic - jazda na wprost

Rys. 4. Wykres momentów silników gąsienic - jazda w skręcie

umożliwia rejestrację kilkudziestu parametrów napędu.
Jaki widać z przykładowych wykresów sytuacja jest dużo gorsza podczas jazdy w skręcie, kiedy to może dochodzić do obciążania się silników jednej pary gąsienic momentami przeciwnymi. Na rysunku 4 przedstawiono dodatkowo wykres moment silnika śruby skrętu dla zobrazowania, w którym momentu następuje skręt (dodatnia i ujemna wartość momentu, to skręt w przeciwnie stronę).

Aby wyeliminować nadmierną sztywność napędu zdecydowano o zastosowaniu funkcji Droop, która w zależności od wielkości momentu napędowego wytwarzanego na wale silnika wprowadza stosowną korekcję w terze wartości zadanej w algorytmie regulacji prędkości zadanej silnika. W zależności od wielkości współczynnika regulującego wpływ tej funkcji na wartość zadana obserwowano różne zachowania się poszczeżalnych układów napedowych zarówno w narach, jak i dla wszystkich 6-ciu gąsienic. Pożądane efekty uzyskano dopiero przy zastosowaniu dość wysokiej wartości współczynnika.

Zastosowanie funkcji Droop pozwoliło również na zmniejszenie uderzeń momentu napędowego podczas przelamywania płyt gąsienic. Efekt zmniejszania uderzeń momentu był wyraźnie widoczny.

Po zastosowaniu funkcji „Droop” układ dalej wykazywał (choć w mniejszym stopniu) w pewnych sytuacjach tendencje do obciążania gąsienic momentami o przeciwnych wartościach. Wprowadzenie dodatkowej funkcji, zwiększającej prędkość nieobciążonych gąsienic pozwoliło na wyeliminowanie tego niekorzystnego zjawiska. Na rysunku 5 przedstawiono został wykres momentów silników gąsienic podczas jazdy w skręcie. Na rysunku tym przedstawiono dodatkowo (kolorami czernymi) wartość proporcjonalną do kąta skrętu wahaczy skrętowych. Wartość 0 odpowiada zerowemu katowi skrętu.

Rys. 4. Schemat działania funkcji Droop

Moment akt

Src Droop

skala Droop

wartość zadana

wartość zadana
Przeprowadzono kilka prób mających na celu zmniejszenie występujących obciążení na śruby skrętu, podczas których wykonano różne modyfikacje prędkości zadanej gąsienicy. Algorytm sterowania jazdą koparki realizowany w sterowniku nadprzecznym zakłada różnicowanie prędkości gąsienicy w zależności od kąta skrętu, czyli od wielkości luku po którym w danej chwili porusza się koparka. Sytuacja ta jest zobrazowana na rysunku 6, na którym zaznaczono są trajektorie gąsienicy. Jak widać dla jazdy po luku dla poszczególnych gąsienic wyznaczone są 4 różne prędkości jazdy zależnie od położenia gąsienicy. Takie zróżnicowanie prędkości wspomaga jazdę po luku, natomiast przeciwdziała pogłębianiu skrętu dla tylnego względu kierunku jazdy wahacza skrętnego.

Na wstęp dla zrealizowania wspomagania skrętu zdecydowano się na modyfikację wartości zadanych prędkości dla gąsienicy podwozi skrętnych adekwatnie do kierunku jazdy koparki oraz kierunku wykonywania skrętu, czyli kierunku pracy śruby skrętu. Należy zauważyć, że w przypadku pogłębiania skrętu różnicowanie prędkości powoduje, iż podwozie skrętné znajdujące się z tyłu względem kierunku jazdy, ma tendencje do skrętu w przeciwnym kierunku do tego, który jest realizowany przez śrubę skrętu. Zmiana proporcji prędkości gąsienicy „zewnętrznej” i „wewnętrznej” lub wręcz zamiana wartości zadanych dla tych gąsienic w mniejszym lub większym stopniu powinna wspomagać wykonanie skrętu. Wstępne pomiary i obserwacje, w tym obserwacje momentu aktualnego napędu śruby skrętu, wykazały jednak, iż zastosowanie tego rodzaju algorytmu prowadzi do powstania większych naprężeń w konstrukcji podwozia. Z uwagi na ograniczoną ilość czasu oraz ograniczoną dostępność koparki zregenerowano z dalszych prób i zregenerowano z wyżej opisanych algorytmów wspomagania skrętu.

Wnioski

Układ napędowy jazdy koparki węgla brunatnego, pomimo iż wygląda na niezależny jeśli chodzi o sprzężenia mechaniczne pomiędzy poszczególnymi silnikami, wykazuje wiele cech układu, w którym dwa napędy są sprzężone z sytuacja. Sprzężenie takie uwidacznia się nie tylko pomiędzy parami gąsienicy jednego podwozia, ale również występuje pomiędzy różnymi podwoziami. Sprzężenie to daje efekt „zreagowania się” gąsienicy i w przypadku stosowania tak sztywnego i dynamicznego układu regulatora prędkości ze sprzężeniem zwrotnym powoduje duże naprężenia mechaniczne zarówno w segmentach gąsienicy jak i w konstrukcji podwozia. Efekt ten można wzmocnić poprzez „zmniejszenie” sytywnej charakterystyki nadanej przez napęd przekształtny z encorem za pomocą funkcji Droop. Dodatkowe poprawienie działania układu napędowego jazdy uzyskuje się poprzez nieznaczne zwiększanie prędkości napędu gąsienic, które wykazują najmniejsze obciążenie.

Z uwagi na ograniczony czas prób wykonano jedynie wstępne próby wspomagania napędu śruby przy skrzezie odpowiednim sterowaniem napędu, co spowodowało zwiększenie naprężeń w konstrukcji podwozia. Na wykonanie prób należałoby poświęcić więcej czasu. Zastosowanie przemiennika pozwala jednak kontrolować i mierzyć moment silnika śruby skrętu.