Nowa wersja platformy jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | Nr 2 | 24-28
Tytuł artykułu

Produkcja bioetanolu z odpadów lignocelulozowych : możliwości i ograniczenia. Cz. II. Hydroliza i fermentacja

Warianty tytułu
EN
Bioethanol production using lignocellulose waste : possibilities and limitations. Part II: Hydrolysis and fermentation
Języki publikacji
PL
Abstrakty
EN
Microorganisms used in the process of enzymatic hydrolysis. Pro-cess" conditions and its effectivity. Comparison of hydrolysis me-thods for lignocellulose waste. Fermentation of the described waste and proper technological systems.
Wydawca

Rocznik
Tom
Strony
24-28
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
  • Uniwersytet Warmińsko-Mazurski w Olsztynie, Wydział Ochrony Środowiska i Rybactwa, Katedra Biotechnologii w Ochronie Środowiska, 10-907 Olsztyn-Kortowo, ul. Słoneczna 45G, tel. (0-89) 523-41-45, dorotak@uwm.edu.pl
Bibliografia
  • [1] McMillan J. D. 1994. Pretreatment of lignocellulosic biomass. In: Him-mel M. E. Baker J. O. Overend R. P. (Eds.), Enzymatic Conversion of Biomass for Fuels Production. American Chemical Society, Washington, DC, str. 292-324.
  • [2] Iranmahboob J., Nadim R, Monemi S. 2002. Optimizing acid-hydrolysis: a critical step for production of ethanol from mixed wood chips. Biomass & Bioenergy; 22: 401-404.
  • [3] Sivers MV., Zacchi G. 1995. A techno-economical comparison of three pro-cesses for the production of ethanol from pine. Bioresource Technology; 51: 43-52.
  • [4] Rodriguez-Chong A., Ramirez J. A., Garrote G., Vazquez M. 2004. Hydrolysis of sugar cane bagasse using nitric acid: a kinetic assessment. Journal of Food Engineering; 61: 143-152.
  • [5] Gamez S., Gonzalez-Cabriales J. J., Ramirez J. A., Garrote G., Vazquez M. 2006. Study of the hydrolysis of sugar cane bagasse using phosphoric acid. Journal of Food Engineering; 74: 78-88.
  • [6] Kim S. J., Lee Y. Y., Torget W. 2001. Cellulose hydrolysis under extremely Iow sulfuric acid and high-temperature conditions. Applied Biochemistry and Biotechnology; 91-93: 331-340. [7] Broder J. D., Barier J. W., Lee K. P, Bulls M. M. 1995. Biofuels system
  • economics. World Resources Review; 7: 560-569.
  • [8] Patrick Lee K. C., Bulls M., Holmes J., Barrier J. W. 1997. Hybrid process for the conversion of lignocellulosic materials. Applied Biochemistry and Biotechnology; 66: 1-23.
  • [9] Liao W., Liu Y, Liu Ch., Wen Z., Chen S. 2006. Acid hydrolysis of fibers from dairy manure. Bioresource Technology; 97: 1687-1695.
  • [10] Graf A., Koehler T. 2000. Oregon cellulose-ethanol study. Ań evaluation of the potential for ethanol production in Oregon using cellulose-based feed-stocks. http://www.oregon.gov/ENERGY/RENEW/Biomass/study.shtml
  • [11] Hamelinick C. N., Hooijdonk G., Faaij A. PC 2005. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long--term. Biomass & Bioenergy; 28: 348-410.
  • [12] Karimi K., Emitiazi G., Taherzadeh M. J. 2006. Etanol production from di-lute-acid pretreated rice straw by Simultaneous saccharification and fer-mentation with Mucor indicus, Rhisopus oryzae, and Saccharomyces cere-visiae. Enzyme and Microbial Technology; 40: 138-144.
  • [13] Tomme R, Warren R. A., Gilkes N. R 1995. Cellulose hydrolysis by bacte-ria and fungi. Advances in Microbial Physiology; 37: 1-81.
  • [14] Duff S. J. B., Murray W. D. 1996. Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresource Technology; 55: 1-33.
  • [15] Rabinovich M. L., Melnik M. S., Bolobova A. V. 2002. Microbial cellula-ses: a review. Applied Biochemistry and Microbiology; 34: 305-321.
  • [16] Sun Y, Cheng J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresoursce Technology; 83: 1-11.
  • [17] Gilkes N. R., Kilburn D. G., Miller Jr. R. C., Warren R. A. J. 1991. Bacte-rial cellulases. Bioresource Technology; 36: 21-35.
  • [18] Walker L. P, Wilson D. B., Irwin D. C. 1990. Measuring fragmentation of cellulose by Thermomonospora fusca cellulose. Enzyme Microbiol Technology; 12: 378-386
  • [19] Okeke B. C., Obi S. K. C. 1995. Saccharification of agro-waste materials by fungal cellulases and hemicellulases. Bioresource Technology; 51: 23-27
  • [20] Chen M., Xia L., Xue P. 2007. Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. International Biodeterioration & Biodegradation; 59: 85-89.
  • [21] Moniruzzaman M. 1996. Saccharification and alcohol fermentation of ste-am-exploded rice straw. Bioresource Technology; 55: 111-117.
  • [22] Ballestros L, Oliva J. M., Negro M. J., Manzanares P, Ballestros M. 2002. Enzymie hydrolysis of steam exploded herbaceous agricultural waste (Bras-sica carinata) at different particule sizes. Process Biochemistry; 38: 187-192.
  • [23] Martin C., Klinke H. B., Thomsen A. B. 2007. Wet oxidation as a pretreat-ment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme And Microbial Technology; 40: 426-432.
  • [24] Martin C., Galbe M., Wahlbom C. F., Hahn-Hagerdal B., Jonsson L. J. 2002. Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme And Microbial Technology; 31: 274-282.
  • [25] Palmqvist E., Hahn- Hagerdal B. 2000. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresource Technology; 74: 17-24.
  • [26] Klinke H. B., Thomsen A. B., Ahring B. K. 2004. Inhibition of ethanol-pro-ducing yeast and bacteria by degradation products produced during pre-tre-atment of biomass. Applied Microbiol Biotechnol; 66: 10-26.
  • [27] Palmqvist E., Hahn-Hagerdal B. 2000. Fermentation of lignocellulosic hydrolysates. II. Inhibitors and mechanisms of inhibition. Bioresource Technology; 74: 25-33
  • [28] Olsson L., Hahn-Hagerdal B. 1996. Fermentation of lignocellulosic hydroly-sates for ethanol production. Enzyme Microbiol Technology; 18: 312-331.
  • [29] Palmqvist E., Hahn-Hagerdal B., Szengyel Z., Zacchi G., Reczey K. 1997. Simultaneous detoxifcation and enzyme production of hemicellulose hydro-lysates obtained after steam pretreatment. Enzyme Microbiol Technology; 20: 286-293.
  • [30] Jónsson L. J., Palmqvist E., Nilvebrant N. O., Hahn-Hagerdal B. 1998. De-toxifcation of wood hydrolysates with laccase and peroxidase from the whi-te-rot fungus Trametes versicolor. Applied Microbiology Biotechnology; 49:691-697.
  • [31] Alfani R, Gallifuoco A., Saporosi A., Spera A., Cantarella M. 2000. Com-parison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw. Journal of Industrial Microbiology & biotechnology; 25: 184-192.
  • [32] Ergun M., Mutulu S. F. 2000. Application of statistical techniąue to the production of ethanol from sugar beet molasses by Saccharomyces cerevisiae. Bioresource Technology; 73: 251-255.
  • [33] Yu Z., Zhang H. 2003. Ethanol fermentation of acid-hydrolyzed cellulosic pyrolysate with Saccharomyces cerevisiae. Bioresource Technology; 90: 95-100.
  • [34] Zaldivar J., Nielsen J., Olsson L. 2001. Fuel ethanol production from ligno-cellulose: a challenge for metabolic engineering and process integration. Applied Microbiol Biotechnol; 56: 17-34.
  • [35] Lin Y., Tanaka S. 2006. Ethanol fermentation from biomass resources: cur-rent state and prospects. Applied Microbiol Biotechnol; 69: 627-642.
  • [36] Okuda N., Ninomiya K., Takao M., Katakura Y, Shioya S. 2007. Micro-aeration enhances productivity of Bioetanol from hydrolysates of waste ho-use wood using ethanologenic Escherichia coli KO11. Journal of Bioscien-ce and Bioengineering; 103: 350-357.
  • [37] Hahn-Hagerdal B., Jeppsson H., Skoog K., Prior B. A. 1994. Biochemistry and physiology of xylose fermentation by yeasts. Enzyme Microb. Tech-nol.: 16: 933-943.
  • [38] Chandrakant P, Bisaria V. S. 1998. Simultaneous bioconversion of cellulo-se and hemicellulose to etanol. Crit. Rev. Biotechnol.; 18: 295-331.
  • [39] Dien B. S., Cotta M. A., Jeffries T. W. 2003. Bacteria engineered for fuel ethanol production: current status. Applied Microbiol Biotechnol; 63: 258-266.
  • [40] Rogers P., Joachimstahl E., Haggett K. 1997. Ethanol from lignocellulosics: potential for Zymomonas-based process. Aust. Biotechnol.; 7/5: 304-309.
  • [41] Barbosa M. F. S., Beck M. J., Fein J. E., Potts D., Ingram L. O. 1992. Effi-cient fermentation of Pinus sp., acid hydrolysates by an ethanologenic stra-in of Escherichia coli. Appl. Environ., Microbiol.; 58: 1382-1384.
  • [42] Olsson L., Hahn-Hagerdal B., Zacchi G. 1995. Kinetics of ethanol production by recombinant Escherichia coli KO11. Biotechnol. Bioeng., 45: 356-365.
  • [43] Lawford H. G., Rousseau J. D. 1993. Production of ethanol from pulp mili hardwood and softwood spent sulfite liąuors by genetically engineeeed E. coli. Appl. Biochem. Biotechnol.; 39/40: 667-685.
  • [44] Katahira S., Mizuike A., Fukuda H., Kondo A. 2006. Etanol fermentation from lignocelulozic hydrolysates by a recombinat xylose- and cellooligo-saccharide-assililating yeast strain. Applied Microbiology Biotechnology; 72: 1136-1143.
  • [45] Linden T, Hahn-Hagerdal B. 1989. Fermentation of lignocellulose hydrolysates with yeasts and xylose isomerase. Enzyme Microb. Technol.; 11: 583-589.
  • [46] Linden T, Peetre J., Hahn-Hagerdal B. 1992. Isolation and characterization of acetic acid tolerant galactose-fermenting strains of Saccharomyces cere-visiae from a spent sulfite liąuor fermentation plant. Appl. Environ. Micro-bial.; 58: 1661-1669.
  • [47] Eklund R., Zacchi G. 1995. Simultaneous saccharification and fermentation of steam-pretreated willow. Enzyme Microbial Technology; 17: 255-259.
  • [48] Ballestros L, Oliva J. M., Negro M. J., Manzanares P, Ballestros M. 2004. Ethanol from lignocellulosic materials by a Simultaneous saccharification and fermentation process (SSF) with Kluyveromyces marxianus CECT 10875. Process Biochemistry; 39: 1843-1848.
  • [49] Olsson L., Soerensen H. R., Dam B. R, Christensen H., Krogh K. M., Mey-er A. S. 2006. Separate and Simultaneous enzymatic hydrolysis and fermentation of wheat hemicellulose with recombinant xylose utilizing Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology; 129-132: 117-129.
  • [50] Cardona C. A., Sanchez Ó. J. 2007. Fuel ethanol production. Process design trends and integration opportunities. Bioresource Technology; 98: 2415-2457.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BPP1-0082-0103
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.