PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | Vol. 38, nr 2 | 131-138
Tytuł artykułu

Fractographic study of high-density polyethylene gas pipe following Small Scale Steady State test

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The present work attempts to examine the failure performance of high density polyethylene [HDPE] gas pipe through a fractographic study of the fracture morphology following Small Scale Steady State test (S4). Failure mechanisms are discussed based on the fracture morphologies resulting from these tests. There are many instances where the rapid propagation of cracks is the result of fluid pressure acting on piping structures. This problem is recognized as one of the most important issues of dynamic fracture mechanics. A fractographic study of the HDPE type of a gas pipe has been undertaken. Design/methodology/approach: Scanning electron microscopic (SEM) observations were used to identify elementary process involved in the crack initiation and propagation. Findings: Based on an investigation of the Small Scale Steady State (S4) test, in order to assess the fracture behaviour of polyethylene (PE) gas distribution pipe material during rapid crack propagation (RCP). Failure mechanisms are discussed based on the fracture morphologies resulting from these tests. The influence of molecular architecture on the rapid crack propagation (RCP) resistance of high-density polyethylene pipes was investigated. It was concluded that high molecular weight, high crystallinity and a relatively narrow molecular weight distribution are important architectural attributes for RCP resistance. Research limitations/implications: Applying S4 test is limited to thermoplastic materials. Practical implications: Presented method can be applied for other thermoplastic materials in the future. Originality/value: The expressed method can be applied in the future for developing the research on the process with rapid crack propagation of polymers.
Wydawca

Rocznik
Strony
131-138
Opis fizyczny
Bibliogr. 23 poz., rys., tabl.
Twórcy
autor
autor
  • Division of Metal and Polymer Materials Processing Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, katarzyna.michalik@polsl.pl
Bibliografia
  • [1] L. A. Dobrzański, Engineering materials and material design. Principles of materials science and physical metallurgy, WNT, Warsaw, 2006 (in Polish).
  • [2] Seatchling, The plastics – handbook. WNT. Warsaw 2000.
  • [3] A. Pusz, K. Michalik, Examining the hardness of high density polyethylene with method of the cone, Archives of Materials Science and Engineering 28/8 (2007) 467-470.
  • [4] A. Pusz, K. Michalik, Creep damage mechanisms in gas pipes made of high density polyethylene, Archives of Materials Science and Engineering 36/2 (2009) 89-95.
  • [5] O. Balkan, H. Demirer, H. Yildirim: Morphological and mechanical properties of hot gas welded PE, PP and PVC sheets Journal of Achievements in Materials and Manufacturing Engineering 31/1 (2008) 60-70.
  • [6] M. Żenkiewicz, J. Richert, Influence of polymer samples preparation procedure on their mechanical properties, Journal of Achievements in Materials and Manufacturing Engineering 26/2 (2008) 155-158.
  • [7] J. Tusek, Analysis of a joint of steel and high-density polyethylene, Journal of Achievements in Materials and Manufacturing Engineering 19/2 (2006) 7-15.
  • [8] M. Szymiczek, G. Wróbel, Influence of temperature on the viscoelastic properties of drawn PE pipes, Journal of Achievements in Materials and Manufacturing Engineering, 19 (2007) 287-290.
  • [9] R. K. Krishnaswamy, M. J. Lamborn, A. M. Sukhadia, D. F. Register, P. L. Maeger, P. S. Leevers: Rapid Crack Propagation Failures in HDPE Pipes: Structure – Property Investigations, Polymer Engineering and Science (2006) 1358-1362.
  • [10] P. S. Leevers, P. N. Freeman, M. M. Arthur, Rapid crack propagation in small diameter thermoplastic pipe, Plastics, Rubber and Composites Processing and Applications 24/3 (1995) 113-121.
  • [11] C. J. Greenshields, P. S. Leevers, Correlation between full scale and small scale steady state (S4) tests for rapid crack propagation in plastic gas pipe, Plastics, Rubber and Composites Processing and Applications 28/1 (1999) 20-25.
  • [12] Z. Zhuang, P. E. O’Donoghue, Determination of material fracture toughness by a computational/experimental approach for rapid crack propagation in PE pipe, International Journal of Fracture 101 (2000) 251-268.
  • [13] C. J. Greenshieldss, G. P. Venizelos, A. Ivankovic, A fluid – structure model for fast brittle fracture in plastic pipes, Journal of Fluids and Structures 14 (2000) 221-234.
  • [14] P. S. Leevers, P. Yayla, A new small scale test for rapid crack propagation, Proceedings Eleventh Plastic Fuel Gas Pipes Symposium, San Francisco, California, October, 1989.
  • [15] C. J. Greenshields, P. S. Leevers, The effect of air pockets on rapid crack propagation in PVC and polyethylene water pipe, Plastics, Rubber and Composites Processing and Applications 24/1 (1995) 7-12.
  • [16] P. Yayla, P. S. Leevers, Rapid crack propagation in pressurised plastic pipe. II: critical pressures for polyethylene pipe, Engineering Fracture Mechanics 42/4 (1992) 675-682.
  • [17] P. S. Leevers, S. Hillmansen, L. de F. F. Moreno Specimen temperature conditioning and drift before an S4 pipe fracture test, Polymer Testing 23 (2004) 727-735.
  • [18] A. Shah, E. V. Stepanov, G. Capaccio, A. Hiltner, E. Baer, Correlation of fatigue crack propagation in polyethylene pipe specimens of different geometries, International Journal of Fracture 84 (1997) 159-173.
  • [19] A. Shah, E.V. Stepanov, M. Klein, A. Hiltner, E. Baer, Study of polyethylene pipe resins by a fatigue test that simulates crack propagation in real pipe, Journal of Materials Science 33 (1998) 3313-3319.
  • [20] A. Shah, E.V. Stepanov, G. Capaccio, A. Hiltner, E. Baer, Stepwise fatigue crack propagation in polyethylene resins of different molecular structure, Journal of Polymer Science Part B: Polymer Physics 36 (1998) 2355-2369.
  • [21] M. Parsons, E.V. Stepanov, A. Hiltner, E. Baer, Correlation of stepwise fatigue and creep slow crack growth in high density polyethylene, Journal of Materials Science 34 (1999) 3315-3326.
  • [22] PN-EN ISO 13478:2007 Thermoplastics pipes for the conveyance of fluids – Determination of the resistance to rapid crack propagation (RCP) – Full – scale test (FST).
  • [23] PN-EN ISO 13477:2008 Thermoplastics pipes for the conveyance of fluids – Determination of the resistance to rapid crack propagation (RCP) – Small – scale steady – state test (S4).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-article-BOS2-0022-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.