Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | Vol. 37, nr 2 | 779-784
Tytuł artykułu

Nanodiamonds in meteorites: properties and astrophysical context

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Purpose: This contribution provides an overview on properties and origin of nanodiamonds in primitive meteorites. Nanodiamond are a type of stardust, i.e. “pre-solar” grains that formed in the outflows or ejecta of stars. Design/methodology/approach: We summarize previously obtained results and include our results dealing with recoil loss from nanoparticles during radioactive decay of trace elements within them. Findings: Nanodiamonds in primitive meteorites have a mean size of ~2.6 nm and an abundance reaching up to ~0.15 % by weight. They contain trace noble gases, notably xenon, with an unusual isotopic composition. The latter is reminiscent of the p- and r-processes of nucleosynthesis that are thought to occur during supernova explosions. Our new results show that recoil loss during â decay of implanted 22Na does not exceed what is expected from energy distribution and range-energy relations in matter. While a CVD origin for the diamonds appears likely (but is not assured), the noble gases were probably introduced by ion implantation. Research limitations/implications: The isotopic pattern of Xe contained in nanodiamonds indicates some unconventional types of element synthesis in stars or modification by secondary processes. Recoil loss from nanometer-sized grains during decay of unstable precursor nuclides has been suggested as an explanation, but our experiments do not support this idea. Originality/value: Other processes must be invoked for explanation of the isotopically unusual xenon trapped in meteoritic nanodiamonds. Ion implantation experiments suggest of “trapped” cosmic ray 3He for deriving an age for the diamonds.

Opis fizyczny
Bibliogr. 47 poz., rys., tabl.
  • Department of Geochemistry, Max Planck Institute for Chemistry, Joh.-J.-Becherweg 27, D-55128 Mainz, Germany,
  • [1] E. Anders, E. Zinner, Interstellar grains in primitive meteorites: diamond, silicon carbide, and graphite, Meteoritics 28 (1993) 490-514.
  • [2] U. Ott, Interstellar grains in meteorites, Nature 364 (1993) 25-33.
  • [3] P. Hoppe, Reservoir for comet material: Circumstellar grains, Space Science Reviews 138 (2008) 43-57.
  • [4] J. H. Reynolds, G. Turner, Rare gases in the chondrite Renazzo, Journal of Geophysical Research 69 (1964) 3263-3281.
  • [5] D. C. Black, R. O. Pepin, Trapped neon in meteorites – II, Earth and Planetary Science Letters 6 (1969) 395-405.
  • [6] R. S. Lewis, M. Tang, J. F. Wacker, E. Anders, E. Steel, Interstellar diamonds in meteorites, Nature 326 (1987) 160-162.
  • [7] T. Bernatowicz, G. Fraundorf, M. Tang, E. Anders, B. Wopenka, E. Zinner, P. Fraundorf, Evidence for interstellar SiC in the Murray carbonaceous meteorite, Nature 330 (1987) 728-730.
  • [8] S. Amari, E. Anders, A. Virag, E. Zinner, Interstellar graphite in meteorites, Nature 345 (1990) 238-240.
  • [9] S. Amari, R. S. Lewis, E. Anders, Interstellar grains in meteorites: I. Isolation of SiC, graphite, and diamond; size distributions of SiC and graphite, Geochimica et Cosmochimica Acta 58 (1994) 459-470.
  • [10] P. Hoppe, NanoSIMS: A new tool in cosmochemistry, Applied Surface Science 252 (2006) 7102-7106.
  • [11] E. Zinner, L. R. Nittler, P. Hoppe, R. Gallino, O. Straniero, C. M. O’D. Alexander, Oxygen, magnesium and chromium isotopic ratios of presolar spinel grains, Geochimica et Cosmochimica Acta 69 (2005) 4149-4165.
  • [12] F. J. Stadermann, T. K. Croat, T. J. Bernatowicz, S. Amari, S. Messenger, R. M. Walker, E. Zinner, Supernova graphite in the NanoSIMS: Carbon, oxygen and titanium isotopic compositions of a spherule and its TiC sub-components, Geochimica et Cosmochimica Acta 69 (2005) 177-188.
  • [13] T. L. Daulton, D. D. Eisenhour, T. J. Bernatowicz, R. S. Lewis, P. R. Buseck, Genesis of presolar diamonds: comparative high-resolution transmission electron microscopy study of meteoritic and terrestrial nano-diamonds, Geochimica et Cosmochimica Acta 60 (1996) 4853-4872.
  • [14] I. C. Lyon, MALDI analysis of presolar nanodiamonds: Mass spectrometric determination of the mass distribution of nanodiamonds from meteorites and a technique to manipulate individual nanodiamonds, Meteoritics and Planetary Science 40 (2005) 981-987.
  • [15] J. Maul, E. Marosits, Ch. Sudek, Th. Berg, U. Ott, Lognormal mass distributions of nanodiamonds from proportionate vapor growth, Physical Review B 72 (2005) 245401.
  • [16] A. G. G. M. Tielens, C. G. Seab, D. J. Hollenbach, C. F. McKee, Shock processing of interstellar dust: diamonds in the sky, Astrophysical Journal 319 (1987) L109-L113.
  • [17] P. R. Buerki, S. Leuwyler, Homogeneous nucleation of diamond powder by CO2-laser-drioven gas-phase reactions, Journal of Applied Physics 69 (1991) 3739-3744.
  • [18] A. Gucsik, A. B. Verchovsky, U. Ott, E. Marosits, A. Karczemska, M. Kozanecki, M. Szurgot, A. V. Fisenko, L. F. Semjonova, Meteoritic nanodiamonds: A micro-Raman spectroscopical overview, Lunar and Planetary Science 39 (2008) 1201.
  • [19] A. Gucsik, U. Ott, E. Marosits, A. Karczemska, M. Kozanecki, M. Szurgot, Micro-Raman study of nanodiamonds from Allende meteorite, Proceedings of the IAU Symposium 251 “Organic Matter in Space”, 2008, 335-339.
  • [20] A. El Goresy, P. Gillet, M. Chen, F. Künstler, G. Graup, V. Stähle, In situ discovery of shock-induced graphite-diamond phase transition in gneisses from the Ries Crater, Germany, American Mineralogist 86 (2001) 611-621.
  • [21] S. Mostefaoui, A. El Goresy, P. Hoppe, Ph. Gillet, U. Ott, Mode of occurrence, textural settings and nitrogen-isotopic compositions of in-situ diamonds and other carbon phases in the Bencubbin meteorite, Earth and Planetary Science Letters 204 (2002) 89-100.
  • [22] T. Kenkmann, U. Hornemann, D. Stöffler, Transformation of graphite to diamond in shock experiments: A Raman study, Proceedings of the 33rd Conference „Lunar and Planetary Science“, Huston, 2002,1201.
  • [23] J. Chen, S. Z. Deng, J. Chen, Z. X. Yu, N. S. Xu, Graphitization of nanodiamond powder annealed in argon ambient, Applied Physics Letters 74 (1999) 3651-3653.
  • [24] Z. Sun, J. R. Shi, B. K. Tay, S. P. Lau, UV Raman characteristics of nanocrystalline diamond films with different grain size, Diamond and Related Materials 9 (2000) 1979-1983.
  • [25] Th. Berg, E. Marosits, J. Maul, P. Nagel, U. Ott, F. Schertz, St. Schuppler, Ch. Sudek, G. Schönhense, Quantum confinement observed in the x-ray absorption spectrum of size distributed meteoritic nanodiamonds, Journal of Applied Physics 104 (2008) 064303.
  • [26] S. S. Russell, J. W. Arden, C. T. Pillinger, A carbon and nitrogen isotope study of diamond from primitive chondrites, Meteoritics and Planetary Science 31 (1996) 343-355.
  • [27] T. Owen, P. R. Mahaffy, H. B. Niemann, S. Atreya, M. Wong, Protosolar nitrogen, Astrophysical Journal 553 (2001) L77-L79.
  • [28] B. Marty, L. Zimmermann, P. G. Burnard, D. L. Burnett, V. S. Heber, R. Wieler, P. Bochsler, R. C. Wiens, S. Sestak, I. A. Franchi, In search of solar wind nitrogen in genesis material: Further analysis of a gold cross arm of the concentrator, Proceedings of the 40th Conference “Lunar and Planetary Science”, The Woodlands, USA, 2009, 1857.
  • [29] G. R. Huss, R. S. Lewis, Noble gases in presolar diamonds I: Three distinct components and their implications for diamond origins, Meteoritics 29 (1994) 791-810.
  • [30] U. Ott, Interstellar diamond xenon and time scales of supernova ejecta, Astrophysical Journal 463 (1996) 344-348.
  • [31] D. D. Clayton, Origin of heavy xenon in meteoritic diamonds, Astrophysical Journal 340 (1989) 613-619.
  • [32] B. S. Meyer, D. D. Clayton, L.-S. The, Molybdenum and zirconium isotopes from a supernova neutron burst, Astrophysical Journal 540 (2000) L49-L52.
  • [33] K. K. Marhas, P. Hoppe, U. Ott, NanoSIMS studies of Ba isotopic compositions in single presolar silicon carbide grains from AGB stars and supernovae, Meteoritics and Planetary Science 42 (2007) 1077-1101.
  • [34] G. R. Huss, A. P. Koscheev, U. Ott, Noble gases in presolar diamonds III: Implications of ion implantation experiments with synthetic nanodiamonds, Meteoritics and Planetary Science 43 (2008) 1811-1826.
  • [35] A. Besmehn, P. Hoppe, R. Strebel, U. Ott, Search for Extinct Aluminum-26 and Titanium-44 in Diamonds from the Allende and Murchison Meteorites, Proceedings of the 31st Annual Conference „Lunar and Planetary Science“ Huston, 2000, 1544.
  • [36] E. Marosits, U. Ott, Investigating recoil loss from 22Na decay within nanograins, Meteoritics and Planetary Science 41 (2006) A113.
  • [37] E. Marosits, Nanodiamanten in primitiven Meteoriten: Strukturuntersuchungen und Einfluss des Rückstoßes bei β-Zerfällen, Ph.D. thesis, Johannes-Gutenberg-Universität, Mainz, Germany, 2008.
  • [38] U. Ott, K.-L. Kratz, K. Farouqi, On ways for making Xenon-HL, Meteoritics and Planetary Science 44 (2009) A162.
  • [39] R. S. Lewis, E. Anders, Isotopically anomalous xenon in meteorites: a new clue to its origin, Astrophysical Journal 247 (1981) 1122-1124.
  • [40] A. P. Koscheev, M. D. Gromov, R. K. Mohapatra, U. Ott, History of trace gases in presolar diamonds inferred from ion implantation experiments, Nature 412 (2001) 615-617.
  • [41] A. B. Verchovsky, I. P. Wright, C. T. Pillinger, Ion implantation into presolar grains: A theoretical model, Publications of the Astronomical Society of Australia 20 (2003) 329-336.
  • [42] A. P. Koshcheev, P. V. Gorokhov, M.D. Gromov, A. A. Perov, U. Ott, The chemistry of the surface of modified detonation nanodiamonds of different types, Russian Journal of Physical Chemistry 82 (2008) 1908-1914.
  • [43] E. Marosits, U. Ott, Noble gases in pre-annealed meteoritical nanodiamonds, Meteoritics and Planetary Science 43 (2008) A89.
  • [44] F. Gyngard, S. Amari, E. Zinner, U. Ott, Interstellar exposure ages of large presolar SiC grains from the Murchison meteorite, Astrophysical Journal 694 (2009) 359-366.
  • [45] P. R. Heck, F. Gyngard, U. Ott, M. M. M. Meier, J. N. Ávila, S. Amari, E. K. Zinner, R. S. Lewis, H. Baur, R. Wieler, Interstelllar residence times of presolar SiC dust grains from the Murchison carbonaceous meteorite, Astrophysical Journal 698 (2009) 1155-1164.
  • [46] U. Ott, P. R. Heck, F. Gyngard, R. Wieler, F. Wrobel, S. Amari, E. Zinner, He and Ne ages of large presolar silicon carbide grains: Solving the recoil problem, Publications of the Astronomical Society of Australia 26 (2009) 297-302.
  • [47] U. Ott, G. R. Huss, Trapping of cosmic ray helium by interstellar diamond, Meteoritics and Planetary Science 43 (2008) A125.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.